10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Meta-analysis of brain iron levels of Parkinson’s disease patients determined by postmortem and MRI measurements

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brain iron levels in patients of Parkinson’s disease (PD) are usually measured in postmortem samples or by MRI imaging including R2* and SWI. In this study we performed a meta-analysis to understand PD-associated iron changes in various brain regions, and to evaluate the accuracy of MRI detections comparing with postmortem results. Databases including Medline, Web of Science, CENTRAL and Embase were searched up to 19 th November 2015. Ten brain regions were identified for analysis based on data extracted from thirty-three-articles. An increase in iron levels in substantia nigra of PD patients by postmortem, R2* or SWI measurements was observed. The postmortem and SWI measurements also suggested significant iron accumulation in putamen. Increased iron deposition was found in red nucleus as determined by both R2* and SWI, whereas no data were available in postmortem samples. Based on SWI, iron levels were increased significantly in the nucleus caudatus and globus pallidus. Of note, the analysis might be biased towards advanced disease and that the precise stage at which regions become involved could not be ascertained. Our analysis provides an overview of iron deposition in multiple brain regions of PD patients, and a comparison of outcomes from different methods detecting levels of iron.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications.

          Autografting of dopamine-producing adrenal medullary tissue to the striatal region of the brain is now being attempted in patients with Parkinson's disease. Since the success of this neurosurgical approach to dopamine-replacement therapy may depend on the selection of the most appropriate subregion of the striatum for implantation, we examined the pattern and degree of dopamine loss in striatum obtained at autopsy from eight patients with idiopathic Parkinson's disease. We found that in the putamen there was a nearly complete depletion of dopamine in all subdivisions, with the greatest reduction in the caudal portions (less than 1 percent of the dopamine remaining). In the caudate nucleus, the only subdivision with severe dopamine reduction was the most dorsal rostral part (4 percent of the dopamine remaining); the other subdivisions still had substantial levels of dopamine (up to approximately 40 percent of control levels). We propose that the motor deficits that are a constant and characteristic feature of idiopathic Parkinson's disease are for the most part a consequence of dopamine loss in the putamen, and that the dopamine-related caudate deficits (in "higher" cognitive functions) are, if present, less marked or restricted to discrete functions only. We conclude that the putamen--particularly its caudal portions--may be the most appropriate site for intrastriatal application of dopamine-producing autografts in patients with idiopathic Parkinson's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease.

            Levels of iron, copper, zinc, manganese, and lead were measured by inductively coupled plasma spectroscopy in parkinsonian and age-matched control brain tissue. There was 31-35% increase in the total iron content of the parkinsonian substantia nigra when compared to control tissue. In contrast, in the globus pallidus total iron levels were decreased by 29% in Parkinson's disease. There was no change in the total iron levels in any other region of the parkinsonian brain. Total copper levels were reduced by 34-45% in the substantia nigra in Parkinson's disease; no difference was found in the other brain areas examined. Zinc levels were increased in substantia nigra in Parkinson's disease by 50-54%, and the zinc content of the caudate nucleus and lateral putamen was also raised by 18-35%. Levels of manganese and lead were unchanged in all areas of the parkinsonian brain studied when compared to control brains, except for a small decrease (20%) in manganese content of the medial putamen. Increased levels of total iron in the substantia nigra may cause the excessive formation of toxic oxygen radicals, leading to dopamine cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains.

              The regional distributions of iron, copper, zinc, magnesium, and calcium in parkinsonian brains were compared with those of matched controls. In mild Parkinson's disease (PD), there were no significant differences in the content of total iron between the two groups, whereas there was a significant increase in total iron and iron (III) in substantia nigra of severely affected patients. Although marked regional distributions of iron, magnesium, and calcium were present, there were no changes in magnesium, calcium, and copper in various brain areas of PD. The most notable finding was a shift in the iron (II)/iron (III) ratio in favor of iron (III) in substantia nigra and a significant increase in the iron (III)-binding, protein, ferritin. A significantly lower glutathione content was present in pooled samples of putamen, globus pallidus, substantia nigra, nucleus basalis of Meynert, amygdaloid nucleus, and frontal cortex of PD brains with severe damage to substantia nigra, whereas no significant changes were observed in clinicopathologically mild forms of PD. In all these regions, except the amygdaloid nucleus, ascorbic acid was not decreased. Reduced glutathione and the shift of the iron (II)/iron (III) ratio in favor of iron (III) suggest that these changes might contribute to pathophysiological processes underlying PD.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                09 November 2016
                2016
                : 6
                : 36669
                Affiliations
                [1 ]Department of Neurology, the Second Affiliated Hospital, Wenzhou Medical University , Wenzhou, Zhejiang 325000, China
                [2 ]Department of Preventive Medicine, Wenzhou Medical University , Wenzhou, Zhejiang 325035, China
                [3 ]Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University , Wenzhou, Zhejiang 325035, China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep36669
                10.1038/srep36669
                5101491
                28442746
                6a3c488d-6e9d-4df0-ae7b-9f290f085224
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 29 February 2016
                : 19 October 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article