1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physiological and Metabolic Responses of Leymus chinensis Seedlings to Alkali Stress

        , , , ,
      Plants
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To elucidate the physiological and metabolic mechanism of perennial grass responses to alkali stress, we selected Leymus chinensis (L. chinensis), a salt-tolerant perennial rhizomatous species of the family Poaceae as experimental material. We conducted a pot experiment in a greenhouse and measured the biomass, physiological characteristics, metabonomic, and corresponding metabolites. Our results showed that alkali stress significantly inhibited seedling growth and photosynthesis, which caused ion imbalance and carbon deficiency, but the alkali stress significantly increased the nitrogen and ATP contents. The metabolic analysis indicated that alkali stress markedly enhanced the contents of nucleotides, amino acids, and organic acids, but it decreased soluble sugar contents. Pathway enrichment analysis showed that the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle, which was related to nitrogen metabolism, was most significantly affected by alkali stress. The contents of glutamine synthetase (GS) and glutamate synthetase (GOGAT) involved in this pathway were also significantly increased. Our results not only verified the important roles of some amino acids and organic acids in resisting alkali stress, but also further proved that nucleotides and the GS/GOGAT cycle related to nitrogen metabolism played critical roles for seedlings in response to alkali stress.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Elucidating the molecular mechanisms mediating plant salt-stress responses.

          Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks.

            Plants regularly face adverse growth conditions, such as drought, salinity, chilling, freezing, and high temperatures. These stresses can delay growth and development, reduce productivity, and, in extreme cases, cause plant death. Plant stress responses are dynamic and involve complex cross-talk between different regulatory levels, including adjustment of metabolism and gene expression for physiological and morphological adaptation. In this review, information about metabolic regulation in response to drought, extreme temperature, and salinity stress is summarized and the signalling events involved in mediating stress-induced metabolic changes are presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              DNA damage and repair in plants – from models to crops

              The genomic integrity of every organism is constantly challenged by endogenous and exogenous DNA-damaging factors. Mutagenic agents cause reduced stability of plant genome and have a deleterious effect on development, and in the case of crop species lead to yield reduction. It is crucial for all organisms, including plants, to develop efficient mechanisms for maintenance of the genome integrity. DNA repair processes have been characterized in bacterial, fungal, and mammalian model systems. The description of these processes in plants, in contrast, was initiated relatively recently and has been focused largely on the model plant Arabidopsis thaliana. Consequently, our knowledge about DNA repair in plant genomes - particularly in the genomes of crop plants - is by far more limited. However, the relatively small size of the Arabidopsis genome, its rapid life cycle and availability of various transformation methods make this species an attractive model for the study of eukaryotic DNA repair mechanisms and mutagenesis. Moreover, abnormalities in DNA repair which proved to be lethal for animal models are tolerated in plant genomes, although sensitivity to DNA damaging agents is retained. Due to the high conservation of DNA repair processes and factors mediating them among eukaryotes, genes and proteins that have been identified in model species may serve to identify homologous sequences in other species, including crop plants, in which these mechanisms are poorly understood. Crop breeding programs have provided remarkable advances in food quality and yield over the last century. Although the human population is predicted to “peak” by 2050, further advances in yield will be required to feed this population. Breeding requires genetic diversity. The biological impact of any mutagenic agent used for the creation of genetic diversity depends on the chemical nature of the induced lesions and on the efficiency and accuracy of their repair. More recent targeted mutagenesis procedures also depend on host repair processes, with different pathways yielding different products. Enhanced understanding of DNA repair processes in plants will inform and accelerate the engineering of crop genomes via both traditional and targeted approaches.
                Bookmark

                Author and article information

                Contributors
                Journal
                PLANCD
                Plants
                Plants
                MDPI AG
                2223-7747
                June 2022
                June 02 2022
                : 11
                : 11
                : 1494
                Article
                10.3390/plants11111494
                35684267
                6a05f992-2851-4cda-a548-47de2da5b2bf
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article