32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effect of Poloxamer 407-Based Hydrogel on the Osteoinductivity of Demineralized Bone Matrix

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Demineralized bone matrix (DBM) is used for bone healing due to its osteoinductivity, but it requires a carrier for clinical application. Here, we report the effects on the osteoinductivity of DBM by use of a poloxamer 407-based hydrogel as the carrier, compared to sterile water.

          Methods

          DBM-W and DBM-H represent 27 wt% of DBM with sterile water and DBM with a poloxamer 407-based hydrogel, respectively. Both of the compositions were applied to human mesenchymal stem cell (MSC) cultures, and monitored for alkaline phosphatase (ALP) staining and ALP activity. Six 10-week-old athymic nude rats were used for abdominal muscle grafting with either DBM-W or DBM-H, and were tested by plane radiography, microfocus X-ray computed tomography (CT), and decalcified histology to evaluate ectopic bone formation.

          Results

          The DBM-W group showed stronger ALP staining at 7, 14, and 21 days of treatment, and significantly higher ALP activity at 7 and 14 days of treatment, compared to the DBM-H group. Plane radiography could not confirm the radio-opaque lesions in the rat ectopic bone formulation model. However, ectopic bone formation was observed in both groups by micro-CT. Compared to the DBM-H group, the DBM-W group showed higher bone volume, percent bone volume and trabecular number, and the difference in percent bone volume was statistically significant. Decalcified histology found bony tissue with lamellation in both groups.

          Conclusions

          Our results suggest that poloxamer 407-based hydrogel has efficacy as a DBM carrier since it shows ectopic bone formation, but its effects on the quality and quantity of osteoblastic differentiation in rat abdominal ectopic bone and MSC are considered negative.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned.

          Increasingly, reports of frequent and occasionally catastrophic complications associated with use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in spinal fusion surgeries are being published. In the original peer review, industry-sponsored publications describing the use of rhBMP-2 in spinal fusion, adverse events of these types and frequency were either not reported at all or not reported to be associated with rhBMP-2 use. Some authors and investigators have suggested that these discrepancies were related to inadequate peer review and editorial oversight. To compare the conclusions regarding the safety and related efficacy published in the original rhBMP-2 industry-sponsored trials with subsequently available Food and Drug Administration (FDA) data summaries, follow-up publications, and administrative and organizational databases. Systematic review. Results and conclusions from original industry-sponsored rhBMP-2 publications regarding safety and related efficacy were compared with available FDA data summaries, follow-up publications, and administrative and organizational database analyses. There were 13 original industry-sponsored rhBMP-2 publications regarding safety and efficacy, including reports and analyses of 780 patients receiving rhBMP-2 within prospective controlled study protocols. No rhBMP-2-associated adverse events (0%) were reported in any of these studies (99% confidence interval of adverse event rate <0.5%). The study designs of the industry-sponsored rhBMP-2 trials for use in posterolateral fusions and posterior lateral interbody fusion were found to have potential methodological bias against the control group. The reported morbidity of iliac crest donor site pain was also found to have serious potential design bias. Comparative review of FDA documents and subsequent publications revealed originally unpublished adverse events and internal inconsistencies. From this review, we suggest an estimate of adverse events associated with rhBMP-2 use in spine fusion ranging from 10% to 50% depending on approach. Anterior cervical fusion with rhBMP-2 has an estimated 40% greater risk of adverse events with rhBMP-2 in the early postoperative period, including life-threatening events. After anterior interbody lumbar fusion rates of implant displacement, subsidence, infection, urogenital events, and retrograde ejaculation were higher after using rhBMP-2 than controls. Posterior lumbar interbody fusion use was associated with radiculitis, ectopic bone formation, osteolysis, and poorer global outcomes. In posterolateral fusions, the risk of adverse effects associated with rhBMP-2 use was equivalent to or greater than that of iliac crest bone graft harvesting, and 15% to 20% of subjects reported early back pain and leg pain adverse events; higher doses of rhBMP-2 were also associated with a greater apparent risk of new malignancy. Level I and Level II evidence from original FDA summaries, original published data, and subsequent studies suggest possible study design bias in the original trials, as well as a clear increased risk of complications and adverse events to patients receiving rhBMP-2 in spinal fusion. This risk of adverse events associated with rhBMP-2 is 10 to 50 times the original estimates reported in the industry-sponsored peer-reviewed publications. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Donor site pain from the ilium. A complication of lumbar spine fusion.

            Chronic pain at the donor site was reported by 25% of 290 patients who had undergone anterior lumbar spine fusion for low back pain. Donor site pain has characteristic clinical features, may be severely disabling and is stubbornly resistant to treatment. The highest prevalence was in patients who had a tricortical full thickness graft taken through a separate incision overlying the iliac crest. Patients with a clinically unsatisfactory result from the spine fusion also had a significantly higher prevalence of donor site pain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies.

              A prospective randomized clinical study was conducted. To determine whether the dose and carrier that were successful in rhesus monkeys could induce consistent radiographic spine fusion in humans. Preclinical studies have demonstrated that recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive bone morphogenetic protein, is successful at generating spine fusion in rabbits and rhesus monkeys. For this study, 25 patients undergoing lumbar arthrodesis were randomized (1:2:2 ratio) based on the arthrodesis technique: autograft/Texas Scottish Rite Hospital (TSRH) pedicle screw instrumentation (n = 5), rhBMP-2/TSRH (n = 11), and rhBMP-2 only without internal fixation (n = 9). On each side, 20 mg of rhBMP-2 were delivered on a carrier consisting of 60% hydroxyapatite and 40% tricalcium phosphate granules (10 cm /side). The patients had single-level disc degeneration, Grade 1 or less spondylolisthesis, mechanical low back pain with or without leg pain, and at least 6 months failure of nonoperative treatment. All 25 patients were available for follow-up evaluation (mean, 17 months; range 12-27 months). The radiographic fusion rate was 40% (2/5) in the autograft/TSRH group and 100% (20/20) with rhBMP-2 group with or without TSRH internal fixation ( = 0.004). A statistically significant improvement in Oswestry score was seen at 6 weeks in the rhBMP-2 only group (-17.6; = 0.009), and at 3 months in the rhBMP-2/TSRH group (-17.0; = 0.003), but not until 6 months in the autograft/TSRH group (-17.3; = 0.041). At the final follow-up assessment, Oswestry improvement was greatest in the rhBMP-2 only group (-28.7, < 0.001). The SF-36 Pain Index and PCS subscales showed similar changes. This pilot study is the first with at least 1 year of follow-up evaluation to demonstrate successful posterolateral spine fusion using a BMP-based bone graft substitute, with radiographs and CT scans as the determinant. Consistently, rhBMP-2 was able to induce bone in the posterolateral lumbar spine when delivered at a dose of 20 mg per side with or without the use of internal fixation. Patients with spondylolisthesis classified higher than Meyerding Grade 1 or with more than 5 mm of translational motion may still require internal fixation. Some patients did smoke during the postoperative period, and all in the rhBMP-2 groups still obtained solid fusions. Consistently, rhBMP-2 with the biphasic calcium phosphate granules induced radiographic posterolateral lumbar spine fusion with or without internal fixation in patients whose spondylolisthesis did not exceed Grade 1. Statistically greater and quicker improvement in patient-derived clinical outcome was measured in the rhBMP-2 groups.
                Bookmark

                Author and article information

                Journal
                Clin Orthop Surg
                Clin Orthop Surg
                CIOS
                Clinics in Orthopedic Surgery
                The Korean Orthopaedic Association
                2005-291X
                2005-4408
                December 2014
                10 November 2014
                : 6
                : 4
                : 455-461
                Affiliations
                [* ]Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea.
                []Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, Korea.
                []Department of Orthopedic Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
                Author notes
                Correspondence to: Jae Hyup Lee, MD. Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul 156-707, Korea. Tel: +82-2-870-2314, Fax: +82-2-870-3863, spinelee@ 123456snu.ac.kr
                Article
                10.4055/cios.2014.6.4.455
                4233226
                25436071
                69ec75b1-ea1f-4906-89f3-854d37fd4b59
                Copyright © 2014 by The Korean Orthopaedic Association

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 09 July 2013
                : 23 November 2013
                Funding
                Funded by: Seoul National University Hospital
                Award ID: 03-2012-150
                Categories
                Original Article

                Surgery
                demineralized bone matrix,osteoinductivity,carrier,poloxamer 407-based hydrogel
                Surgery
                demineralized bone matrix, osteoinductivity, carrier, poloxamer 407-based hydrogel

                Comments

                Comment on this article