15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional Analysis of the Replication Fork Proteome Identifies BET Proteins as PCNA Regulators

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          Identifying proteins that function at replication forks is essential to understanding DNA replication, chromatin assembly, and replication-coupled DNA repair mechanisms. Combining quantitative mass spectrometry in multiple cell types with stringent statistical cutoffs, we generated a high-confidence catalog of 593 proteins that are enriched at replication forks and nascent chromatin. Loss-of-function genetic analyses indicate that 85% yield phenotypes that are consistent with activities in DNA and chromatin replication or already have described functions in these processes. We illustrate the value of this resource by identifying activities of the BET family proteins BRD2, BRD3, and BRD4 in controlling DNA replication. These proteins use their extra-terminal domains to bind and inhibit the ATAD5 complex and thereby control the amount of PCNA on chromatin.

          Graphical Abstract

          In Brief

          Wessel et al. use iPOND purifications and loss-of-function analyses to identify and characterize a replication fork and nascent chromatin proteome of 593 proteins. They demonstrate the resource’s utility by showing that the BET proteins BRD2, BRD3, and BRD4 inhibit ATAD5-dependent PCNA unloading from chromatin.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          PCNA, the maestro of the replication fork.

          Inheritance requires genome duplication, reproduction of chromatin and its epigenetic information, mechanisms to ensure genome integrity, and faithful transmission of the information to progeny. Proliferating cell nuclear antigen (PCNA)-a cofactor of DNA polymerases that encircles DNA-orchestrates several of these functions by recruiting crucial players to the replication fork. Remarkably, many factors that are involved in replication-linked processes interact with a particular face of PCNA and through the same interaction domain, indicating that these interactions do not occur simultaneously during replication. Switching of PCNA partners may be triggered by affinity-driven competition, phosphorylation, proteolysis, and modification of PCNA by ubiquitin and SUMO.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulated Eukaryotic DNA Replication Origin Firing with Purified Proteins

            Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric MCM complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45, MCM, GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4 dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The importance of repairing stalled replication forks.

              The bacterial SOS response to unusual levels of DNA damage has been recognized and studied for several decades. Pathways for re-establishing inactivated replication forks under normal growth conditions have received far less attention. In bacteria growing aerobically in the absence of SOS-inducing conditions, many replication forks encounter DNA damage, leading to inactivation. The pathways for fork reactivation involve the homologous recombination systems, are nonmutagenic, and integrate almost every aspect of DNA metabolism. On a frequency-of-use basis, these pathways represent the main function of bacterial DNA recombination systems, as well as the main function of a number of other enzymatic systems that are associated with replication and site-specific recombination.
                Bookmark

                Author and article information

                Journal
                101573691
                39703
                Cell Rep
                Cell Rep
                Cell reports
                2211-1247
                19 November 2019
                24 September 2019
                26 November 2019
                : 28
                : 13
                : 3497-3509.e4
                Affiliations
                [1 ]Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
                [2 ]Lead Contact
                Author notes

                AUTHOR CONTRIBUTIONS

                S.R.W., K.N.M., J.W.L., and H.D. performed experiments. S.R.W., K.N.M., and J.W.L. analyzed the data. S.R.W., K.N.M., and D.C. conceived of the project and wrote the manuscript. D.C. supervised the project.

                Article
                NIHMS1543783
                10.1016/j.celrep.2019.08.051
                6878991
                31553917
                69e2ea89-6f82-4bd3-8552-59a71723e1fc

                This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article