19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bioactive Metabolites Produced by Cyanobacteria for Growth Adaptation and Their Pharmacological Properties

      , , , , ,
      Biology
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cyanobacteria are the most abundant oxygenic photosynthetic organisms inhabiting various ecosystems on earth. As with all other photosynthetic organisms, cyanobacteria release oxygen as a byproduct during photosynthesis. In fact, some cyanobacterial species are involved in the global nitrogen cycles by fixing atmospheric nitrogen. Environmental factors influence the dynamic, physiological characteristics, and metabolic profiles of cyanobacteria, which results in their great adaptation ability to survive in diverse ecosystems. The evolution of these primitive bacteria resulted from the unique settings of photosynthetic machineries and the production of bioactive compounds. Specifically, bioactive compounds play roles as regulators to provide protection against extrinsic factors and act as intracellular signaling molecules to promote colonization. In addition to the roles of bioactive metabolites as indole alkaloids, terpenoids, mycosporine-like amino acids, non-ribosomal peptides, polyketides, ribosomal peptides, phenolic acid, flavonoids, vitamins, and antimetabolites for cyanobacterial survival in numerous habitats, which is the focus of this review, the bioactivities of these compounds for the treatment of various diseases are also discussed.

          Related collections

          Most cited references238

          • Record: found
          • Abstract: not found
          • Article: not found

          Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing.

            The cyanobacterial phylum encompasses oxygenic photosynthetic prokaryotes of a great breadth of morphologies and ecologies; they play key roles in global carbon and nitrogen cycles. The chloroplasts of all photosynthetic eukaryotes can trace their ancestry to cyanobacteria. Cyanobacteria also attract considerable interest as platforms for "green" biotechnology and biofuels. To explore the molecular basis of their different phenotypes and biochemical capabilities, we sequenced the genomes of 54 phylogenetically and phenotypically diverse cyanobacterial strains. Comparison of cyanobacterial genomes reveals the molecular basis for many aspects of cyanobacterial ecophysiological diversity, as well as the convergence of complex morphologies without the acquisition of novel proteins. This phylum-wide study highlights the benefits of diversity-driven genome sequencing, identifying more than 21,000 cyanobacterial proteins with no detectable similarity to known proteins, and foregrounds the diversity of light-harvesting proteins and gene clusters for secondary metabolite biosynthesis. Additionally, our results provide insight into the distribution of genes of cyanobacterial origin in eukaryotic nuclear genomes. Moreover, this study doubles both the amount and the phylogenetic diversity of cyanobacterial genome sequence data. Given the exponentially growing number of sequenced genomes, this diversity-driven study demonstrates the perspective gained by comparing disparate yet related genomes in a phylum-wide context and the insights that are gained from it.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Phenolic acids: Natural versatile molecules with promising therapeutic applications

              Highlights • Phenolic acids are key class of dietary polyphenols, natural antioxidants. • They exhibit a variety of functions including plant growth, development, and defense. • They are precursors of other significant bioactive molecules regularly used for therapeutic, cosmetics, and food industries. • These dietary antioxidants shields against growth and evolution in pathological conditions arise from oxidative stress.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BBSIBX
                Biology
                Biology
                MDPI AG
                2079-7737
                October 2021
                October 18 2021
                : 10
                : 10
                : 1061
                Article
                10.3390/biology10101061
                34681158
                69c03e37-2d1a-4da5-b89b-ef0611119e56
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article