31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Food waste conversion to microbial polyhydroxyalkanoates

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Polyhydroxyalkanoates (PHAs) are biopolymers with desirable material properties similar to petrochemically derived plastics. PHAs are naturally produced by a wide range of microorganisms as a carbon storage mechanism and can accumulate to significantly high levels. PHAs are an environmentally friendly alternative to their petroleum counterparts because they can be easily degraded, potentially reducing the burden on municipal waste systems. Nevertheless, widespread use of PHAs is not currently realistic due to a variety of factors. One of the major constraints of large‐scale PHA production is the cost of carbon substrate for PHA‐producing microbes. The cost of production could potentially be reduced with the use of waste carbon from food‐related processes. Food wastage is a global issue and therefore harbours immense potential to create valuable bioproducts. This article's main focus is to examine the state of the art of converting food‐derived waste into carbon substrates for microbial metabolism and subsequent conversion into PHAs.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Food waste within food supply chains: quantification and potential for change to 2050

          Food waste in the global food supply chain is reviewed in relation to the prospects for feeding a population of nine billion by 2050. Different definitions of food waste with respect to the complexities of food supply chains (FSCs)are discussed. An international literature review found a dearth of data on food waste and estimates varied widely; those for post-harvest losses of grain in developing countries might be overestimated. As much of the post-harvest loss data for developing countries was collected over 30 years ago, current global losses cannot be quantified. A significant gap exists in the understanding of the food waste implications of the rapid development of ‘BRIC’ economies. The limited data suggest that losses are much higher at the immediate post-harvest stages in developing countries and higher for perishable foods across industrialized and developing economies alike. For affluent economies, post-consumer food waste accounts for the greatest overall losses. To supplement the fragmentary picture and to gain a forward view, interviews were conducted with international FSC experts. The analyses highlighted the scale of the problem, the scope for improved system efficiencies and the challenges of affecting behavioural change to reduce post-consumer waste in affluent populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates.

            Polyhydroxyalkanoates (PHAs), of which polyhydroxybutyrate (PHB) is the most abundant, are bacterial carbon and energy reserve materials of widespread occurrence. They are composed of 3-hydroxyacid monomer units and exist as a small number of cytoplasmic granules per cell. The properties of the C4 homopolymer PHB as a biodegradable thermoplastic first attracted industrial attention more than 20 years ago. Copolymers of C4 (3-hydroxybutyrate [3HB]) and C5 (3-hydroxyvalerate [3HV]) monomer units have modified physical properties; e.g., the plastic is less brittle than PHB, whereas PHAs containing C8 to C12 monomers behave as elastomers. This family of materials is the centre of considerable commercial interest, and 3HB-co-3HV copolymers have been marketed by ICI plc as Biopol. The known polymers exist as 2(1) helices with the fiber repeat decreasing from 0.596 nm for PHB to about 0.45 nm for C8 to C10 polymers. Novel copolymers with a backbone of 3HB and 4HB have been obtained. The native granules contain noncrystalline polymer, and water may possibly act as a plasticizer. Although the biosynthesis and regulation of PHB are generally well understood, the corresponding information for the synthesis of long-side-chain PHAs from alkanes, alcohols, and organic acids is still incomplete. The precise mechanisms of action of the polymerizing and depolymerizing enzymes also remain to be established. The structural genes for the three key enzymes of PHB synthesis from acetyl coenzyme A in Alcaligenes eutrophus have been cloned, sequenced, and expressed in Escherichia coli. Polymer molecular weights appear to be species specific. The factors influencing the commercial choice of organism, substrate, and isolation process are discussed. The physiological functions of PHB as a reserve material and in symbiotic nitrogen fixation and its presence in bacterial plasma membranes and putative role in transformability and calcium signaling are also considered.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective

                Bookmark

                Author and article information

                Contributors
                charles.miller@usu.edu
                Journal
                Microb Biotechnol
                Microb Biotechnol
                10.1111/(ISSN)1751-7915
                MBT2
                Microbial Biotechnology
                John Wiley and Sons Inc. (Hoboken )
                1751-7915
                24 July 2017
                November 2017
                : 10
                : 6 , Thematic Issue: From complex waste to plastic value ( doiID: 10.1111/mbt2.2017.10.issue-6 )
                : 1338-1352
                Affiliations
                [ 1 ] Department of Biological Engineering Utah State University 4105 Old Main Hill Logan UT 84322‐4105 USA
                [ 2 ] Bioengineering Branch Space BioSciences Division NASA Ames Research Center Moffett Field CA 94035‐1000 USA
                [ 3 ] COSMIAC Research Center University of New Mexico Albuquerque NM 87106 USA
                [ 4 ] Institute of Industrial Biotechnology Government College University Katchery Road Lahore Pakistan
                [ 5 ] Department of Nutrition, Dietetics, and Food Sciences Utah State University 8700 Old Main Hill Logan UT 84322‐8700 USA
                Author notes
                [*] [* ]For correspondence. E‐mail charles.miller@ 123456usu.edu ; Tel. 435‐797‐2593; Fax 435‐797‐1248.
                Article
                MBT212776
                10.1111/1751-7915.12776
                5658610
                28736901
                69b67943-2ff5-4428-8d89-1293219878d3
                © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 November 2016
                : 17 June 2017
                Page count
                Figures: 1, Tables: 4, Pages: 15, Words: 12148
                Categories
                Minireview
                Minireviews
                Custom metadata
                2.0
                mbt212776
                November 2017
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.2.1 mode:remove_FC converted:27.10.2017

                Biotechnology
                Biotechnology

                Comments

                Comment on this article