21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Paraquat Degradation From Contaminated Environments: Current Achievements and Perspectives

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Paraquat herbicide has served over five decades to control annual and perennial weeds. Despite agricultural benefits, its toxicity to terrestrial and aquatic environments raises serious concerns. Paraquat cannot rapidly degrade in the environment and is adsorbed in clay lattices that require urgent environmental remediation. Advanced oxidation processes (AOPs) and bioaugmentation techniques have been developed for this purpose. Among various techniques, bioremediation is a cost-effective and eco-friendly approach for pesticide-polluted soils. Though several paraquat-degrading microorganisms have been isolated and characterized, studies about degradation pathways, related functional enzymes and genes are indispensable. This review encircles paraquat removal from contaminated environments through adsorption, photocatalyst degradation, AOPs and microbial degradation. To provide in-depth knowledge, the potential role of paraquat degrading microorganisms in contaminated environments is described as well.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment.

          Paraquat dichloride (methyl viologen; PQ) is an effective and widely used herbicide that has a proven safety record when appropriately applied to eliminate weeds. However, over the last decades, there have been numerous fatalities, mainly caused by accidental or voluntary ingestion. PQ poisoning is an extremely frustrating condition to manage clinically, due to the elevated morbidity and mortality observed so far and due to the lack of effective treatments to be used in humans. PQ mainly accumulates in the lung (pulmonary concentrations can be 6 to 10 times higher than those in the plasma), where it is retained even when blood levels start to decrease. The pulmonary effects can be explained by the participation of the polyamine transport system abundantly expressed in the membrane of alveolar cells type I, II, and Clara cells. Further downstream at the toxicodynamic level, the main molecular mechanism of PQ toxicity is based on redox cycling and intracellular oxidative stress generation. With this review we aimed to collect and describe the most pertinent and significant findings published in established scientific publications since the discovery of PQ, focusing on the most recent developments related to PQ lung toxicity and their relevance to the treatment of human poisonings. Considerable space is also dedicated to techniques for prognosis prediction, since these could allow development of rigorous clinical protocols that may produce comparable data for the evaluation of proposed therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New insights into antioxidant strategies against paraquat toxicity.

            Paraquat (PQ, 1,1'-dimethyl-4-4'-bipyridinium dichloride) is a highly toxic quaternary ammonium herbicide widely used in agriculture, it exerts its toxic effects mainly because of its redox cycle through the production of superoxide anions in organisms, leading to an imbalance in the redox state of the cell causing oxidative damage and finally cell death. The contribution of mitochondrial dysfunction including increased production of reactive oxygen species besides the reduction in oxygen consumption as well as in the activity of some respiratory complexes has emerged as a key component in the mechanisms through which PQ induces cell death. Although several aspects of PQ-mitochondria interaction remain to be clarified, recent advances have been conducted with reproducible results. Currently, there is no treatment for PQ poisoning; however, several studies taking into account oxidative stress as the main mechanism of PQ-induced toxicity suggest an antioxidant therapy as a viable alternative. In fact, it has been shown that the antioxidants naringin, sylimarin, edaravone, Bathysa cuspidata extracts, alpha-lipoic acid, pirfenidone, lysine acetylsalicylate, selenium, quercetin, C-phycocyanin, bacosides, and vitamin C may be useful in the treatment against PQ toxicity. The main mechanisms involved in the protective effect of these antioxidants include the reduction of oxidative stress and inflammation and the induction of antioxidant defenses. Interestingly, recent findings suggest that the induction of nuclear factor erythroid like-2 (Nrf2), a major regulator of the antioxidant response, by some of the above-mentioned antioxidants, has been involved in the protective effect against PQ-induced toxicity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent advances in glyphosate biodegradation.

              Glyphosate has emerged as the most widespread herbicide to control annual and perennial weeds. Massive use of glyphosate for decades has resulted in its ubiquitous presence in the environment, and poses a threat to humans and ecosystem. Different approaches such as adsorption, photocatalytic degradation, and microbial degradation have been studied to break down glyphosate in the environment. Among these, microbial degradation is the most effective and eco-friendly method. During its degradation, various microorganisms can use glyphosate as a sole source of phosphorus, carbon, and nitrogen. Major glyphosate degradation pathways and its metabolites have been frequently investigated, but the related enzymes and genes have been rarely studied. There are many reviews about the toxicity and fate of glyphosate and its major metabolite, aminomethylphosphonic acid. However, there is lack of reviews on biodegradation and bioremediation of glyphosate. The aims of this review are to summarize the microbial degradation of glyphosate and discuss the potential of glyphosate-degrading microorganisms to bioremediate glyphosate-contaminated environments. This review will provide an instructive direction to apply glyphosate-degrading microorganisms in the environment for bioremediation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                02 August 2019
                2019
                : 10
                : 1754
                Affiliations
                State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University , Guangzhou, China
                Author notes

                Edited by: Qiang Wang, Institute of Hydrobiology (CAS), China

                Reviewed by: Jian He, Nanjing Agricultural University, China; Hongzhi Tang, Shanghai Jiao Tong University, China

                *Correspondence: Shaohua Chen, shchen@ 123456scau.edu.cn

                This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.01754
                6689968
                31428067
                69917e08-fc38-481b-8c1c-e84c1c92ad36
                Copyright © 2019 Huang, Zhan, Bhatt and Chen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 March 2019
                : 15 July 2019
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 80, Pages: 9, Words: 0
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Microbiology
                Review

                Microbiology & Virology
                paraquat,bioremediation,microbial degradation,degradation pathways,oxidation

                Comments

                Comment on this article