11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cooperative contributions of Interferon regulatory factor 1 (IRF1) and IRF8 to interferon-γ-mediated cytotoxic effects on oligodendroglial progenitor cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Administration of exogenous interferon-γ (IFNγ) aggravates the symptoms of multiple sclerosis (MS), whereas interferon-β (IFNβ) is used for treatment of MS patients. We previously demonstrated that IFNγ induces apoptosis of oligodendroglial progenitor cells (OPCs), suggesting that IFNγ is more toxic to OPCs than IFNβ. Thus we hypothesized that a difference in expression profiles between IFNγ-inducible and IFNβ-inducible genes in OPCs would predict the genes responsible for IFNγ-mediated cytotoxic effects on OPCs. We have tested this hypothesis particularly focusing on the interferon regulatory factors (IRFs) well-known transcription factors up-regulated by IFNs.

          Methods

          Highly pure primary rat OPC cultures were treated with IFNγ and IFNβ. Cell death and proliferation were assessed by MTT reduction, caspse-3-like proteinase activity, Annexin-V binding, mitochondrial membrane potential, and BrdU-incorporation. Induction of all nine IRFs was comprehensively compared by quantitative PCR between IFNγ-treated and IFNβ-treated OPCs. IRFs more strongly induced by IFNγ than by IFNβ were selected, and tested for their ability to induce OPC apoptosis by overexpression and by inhibition by dominant-negative proteins or small interference RNA either in the presence or absence of IFNγ.

          Results

          Unlike IFNγ, IFNβ did not induce apoptosis of OPCs. Among nine IRFs, IRF1 and IRF8 were preferentially up-regulated by IFNγ. In contrast, IRF7 was more robustly induced by IFNβ than by IFNγ. Overexpressed IRF1 elicited apoptosis of OPCs, and a dominant negative IRF1 protein partially protected OPCs from IFNγ-induced apoptosis, indicating a substantial contribution of IRF1 to IFNγ-induced OPC apoptosis. On the other hand, overexpression of IRF8 itself had only marginal proapoptotic effects. However, overexpressed IRF8 enhanced the IFNγ-induced cytotoxicity and the proapoptotic effect of overexpressed IRF1, and down-regulation of IRF8 by siRNA partially but significantly reduced preapoptotic cells after treatment with IFNγ, suggesting that IRF8 cooperatively enhances IFNγ-induced OPC apoptosis.

          Conclusions

          This study has identified that IRF1 and IRF8 mediate IFNγ-signaling leading to OPC apoptosis. Therapies targeting at these transcription factors and their target genes could reduce IFNγ-induced OPC loss and thereby enhance remyelination in MS patients.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors.

          The interferon-regulatory factor (IRF) family of transcription factors was initially found to be involved in the induction of genes that encode type I interferons. IRFs have now been shown to have functionally diverse roles in the regulation of the immune system. Recently, the crucial involvement of IRFs in innate and adaptive immune responses has been gaining much attention, particularly with the discovery of their role in immunoregulation by Toll-like receptors and other pattern-recognition receptors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The IRF family transcription factors in immunity and oncogenesis.

            The interferon regulatory factor (IRF) family, consisting of nine members in mammals, was identified in the late 1980s in the context of research into the type I interferon system. Subsequent studies over the past two decades have revealed the versatile and critical functions performed by this transcription factor family. Indeed, many IRF members play central roles in the cellular differentiation of hematopoietic cells and in the regulation of gene expression in response to pathogen-derived danger signals. In particular, the advances made in understanding the immunobiology of Toll-like and other pattern-recognition receptors have recently generated new momentum for the study of IRFs. Moreover, the role of several IRF family members in the regulation of the cell cycle and apoptosis has important implications for understanding susceptibility to and progression of several cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IRF family of transcription factors as regulators of host defense.

              Interferon regulatory factors (IRFs) constitute a family of transcription factors that commonly possess a novel helix-turn-helix DNA-binding motif. Following the initial identification of two structurally related members, IRF-1 and IRF-2, seven additional members have now been reported. In addition, virally encoded IRFs, which may interfere with cellular IRFs, have also been identified. Thus far, intensive functional analyses have been done on IRF-1, revealing a remarkable functional diversity of this transcription factor in the regulation of cellular response in host defense. Indeed, IRF-1 selectively modulates different sets of genes, depending on the cell type and/or the nature of cellular stimuli, in order to evoke appropriate responses in each. More recently, much attention has also been focused on other IRF family members. Their functional roles, through interactions with their own or other members of the family of transcription factors, are becoming clearer in the regulation of host defense, such as innate and adaptive immune responses and oncogenesis.
                Bookmark

                Author and article information

                Journal
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central
                1742-2094
                2011
                24 January 2011
                : 8
                : 8
                Affiliations
                [1 ]The Department of Neurology, University of California Davis, School of Medicine, Sacramento, California, USA
                [2 ]The Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, California, USA
                [3 ]The Laboratory of Molecular Growth Regulation, Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
                Article
                1742-2094-8-8
                10.1186/1742-2094-8-8
                3039583
                21261980
                696490f4-40b5-4c9d-9d24-471a7ff92b7d
                Copyright ©2011 Horiuchi et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 October 2010
                : 24 January 2011
                Categories
                Research

                Neurosciences
                Neurosciences

                Comments

                Comment on this article