5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigation of Weak Noncovalent Interactions Directed by the Amino Substituent of Pyrido- and Pyrimido-[1,2- a]benzimidazole-8,9-diones

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quinones are small redox-active molecules that are able to form intra- and intermolecular interactions both in the solid state and in solution. On the basis of 6-amino-substituted pyrido- and pyrimido-[1,2- a]benzimidazole-8,9-diones, weak interactions were investigated by single-crystal X-ray and 1H NMR spectroscopy methods. Crystallization of quinone derivatives containing a –NH–CH 2– fragment led to the formation of both chiral and achiral crystals. The presence of two forms with ( endo form) and without ( exo form) an intramolecular hydrogen bond was experimentally detected by X-ray crystallography analysis and variable-temperature (VT) 1H NMR experiments in the cases of isopentylamino- and benzylamino-substituted derivatives. Interestingly, the exo form dominates both in the solid state and in solution.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Multiwfn: a multifunctional wavefunction analyzer.

          Multiwfn is a multifunctional program for wavefunction analysis. Its main functions are: (1) Calculating and visualizing real space function, such as electrostatic potential and electron localization function at point, in a line, in a plane or in a spatial scope. (2) Population analysis. (3) Bond order analysis. (4) Orbital composition analysis. (5) Plot density-of-states and spectrum. (6) Topology analysis for electron density. Some other useful utilities involved in quantum chemistry studies are also provided. The built-in graph module enables the results of wavefunction analysis to be plotted directly or exported to high-quality graphic file. The program interface is very user-friendly and suitable for both research and teaching purpose. The code of Multiwfn is substantially optimized and parallelized. Its efficiency is demonstrated to be significantly higher than related programs with the same functions. Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn. The program is free of charge and open-source. Its precompiled file and source codes are available from http://multiwfn.codeplex.com. Copyright © 2011 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            OLEX2: a complete structure solution, refinement and analysis program

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Open Babel: An open chemical toolbox

              Background A frequent problem in computational modeling is the interconversion of chemical structures between different formats. While standard interchange formats exist (for example, Chemical Markup Language) and de facto standards have arisen (for example, SMILES format), the need to interconvert formats is a continuing problem due to the multitude of different application areas for chemistry data, differences in the data stored by different formats (0D versus 3D, for example), and competition between software along with a lack of vendor-neutral formats. Results We discuss, for the first time, Open Babel, an open-source chemical toolbox that speaks the many languages of chemical data. Open Babel version 2.3 interconverts over 110 formats. The need to represent such a wide variety of chemical and molecular data requires a library that implements a wide range of cheminformatics algorithms, from partial charge assignment and aromaticity detection, to bond order perception and canonicalization. We detail the implementation of Open Babel, describe key advances in the 2.3 release, and outline a variety of uses both in terms of software products and scientific research, including applications far beyond simple format interconversion. Conclusions Open Babel presents a solution to the proliferation of multiple chemical file formats. In addition, it provides a variety of useful utilities from conformer searching and 2D depiction, to filtering, batch conversion, and substructure and similarity searching. For developers, it can be used as a programming library to handle chemical data in areas such as organic chemistry, drug design, materials science, and computational chemistry. It is freely available under an open-source license from http://openbabel.org.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                19 October 2023
                31 October 2023
                : 8
                : 43
                : 40960-40971
                Affiliations
                []Riga Technical University, Faculty of Materials Science and Applied Chemistry , 3/7 Paula Valdena St., Riga LV-1048, Latvia
                []Latvian Institute of Organic Chemistry , 21 Aizkraukles St., Riga LV-1006, Latvia
                [§ ]Riga Technical University, Faculty of Computer Science and Information Technology , 10 Zunda krastmala, Riga LV-1048, Latvia
                []University of Latvia, Institute of Solid State Physics , 8 Ķengaraga St., Riga LV-1063, Latvia
                Author notes
                Author information
                https://orcid.org/0000-0001-7268-573X
                Article
                10.1021/acsomega.3c07005
                10621016
                6946bfaf-1529-4eea-a789-b2fed7bdd812
                © 2023 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 13 September 2023
                : 26 September 2023
                Funding
                Funded by: European Social Fund, doi 10.13039/501100004895;
                Award ID: 8.2.2.0/20/I/008
                Funded by: Rigas Tehniska Universitate, doi 10.13039/501100007060;
                Award ID: DOK.LKI/21
                Categories
                Article
                Custom metadata
                ao3c07005
                ao3c07005

                Comments

                Comment on this article