6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hospital wastewater as a source of environmental contamination: An overview of management practices, environmental risks, and treatment processes

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references204

          • Record: found
          • Abstract: found
          • Article: not found

          Virological assessment of hospitalized patients with COVID-2019

          Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 20191,2. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses3. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung2,4; the same receptor tropism is thought to have determined the pathogenicity-but also aided in the control-of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission6-8. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples-in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            First Case of 2019 Novel Coronavirus in the United States

            Summary An outbreak of novel coronavirus (2019-nCoV) that began in Wuhan, China, has spread rapidly, with cases now confirmed in multiple countries. We report the first case of 2019-nCoV infection confirmed in the United States and describe the identification, diagnosis, clinical course, and management of the case, including the patient’s initial mild symptoms at presentation with progression to pneumonia on day 9 of illness. This case highlights the importance of close coordination between clinicians and public health authorities at the local, state, and federal levels, as well as the need for rapid dissemination of clinical information related to the care of patients with this emerging infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence for Gastrointestinal Infection of SARS-CoV-2

              Since the novel coronavirus (SARS-CoV-2) was identified in Wuhan, China, at the end of 2019, the virus has spread to 32 countries, infecting more than 80,000 people and causing more than 2600 deaths globally. The viral infection causes a series of respiratory illnesses, including severe respiratory syndrome, indicating that the virus most likely infects respiratory epithelial cells and spreads mainly via respiratory tract from human to human. However, viral target cells and organs have not been fully determined, impeding our understanding of the pathogenesis of the viral infection and viral transmission routes. According to a recent case report, SARS-CoV-2 RNA was detected in a stool specimen, 1 raising the question of viral gastrointestinal infection and a fecal-oral transmission route. It has been proven that SARS-CoV-2 uses angiotensin-converting enzyme (ACE) 2 as a viral receptor for entry process. 2 ACE2 messenger RNA is highly expressed and stabilized by B0AT1 in gastrointestinal system, 3 , 4 providing a prerequisite for SARS-CoV-2 infection. To further investigate the clinical significance of SARS-CoV-2 RNA in feces, we examined the viral RNA in feces from 71 patients with SARS-CoV-2 infection during their hospitalizations. The viral RNA and viral nucleocapsid protein were examined in gastrointestinal tissues from 1 of the patients. Methods From February 1 to 14, 2020, clinical specimens, including serum, nasopharyngeal, and oropharyngeal swabs; urine; stool; and tissues from 73 hospitalized patients infected with SARS-CoV-2 were obtained in accordance with China Disease Control and Prevention guidelines and tested for SARS-CoV-2 RNA by using the China Disease Control and Prevention–standardized quantitative polymerase chain reaction assay. 5 Clinical characteristics of the 73 patients are shown in Supplementary Table 1. The esophageal, gastric, duodenal, and rectal tissues were obtained from 1 of the patients by using endoscopy. The patient’s clinical information is described in the Supplementary Case Clinical Information and Supplementary Table 2. Histologic staining (H&E) as well as viral receptor ACE2 and viral nucleocapsid staining were performed as described in the Supplementary Methods. The images of fluorescent staining were obtained by using laser scanning confocal microscopy (LSM880, Carl Zeiss MicroImaging, Oberkochen, Germany) and are shown in Figure 1 . This study was approved by the Ethics Committee of The Fifth Affiliated Hospital, Sun Yat-sen University, and all patients signed informed consent forms. Figure 1 Images of histologic and immunofluorescent staining of gastrointestinal tissues. Shown are images of histologic and immunofluorescent staining of esophagus, stomach, duodenum, and rectum. The scale bar in the histologic image represents 100 μm. The scale bar in the immunofluorescent image represents 20 μm. Results From February 1 to 14, 2020, among all of the 73 hospitalized patients infected with SARS-CoV-2, 39 (53.42%), including 25 male and 14 female patients, tested positive for SARS-CoV-2 RNA in stool, as shown in Supplementary Table 1. The age of patients with positive results for SARS-CoV-2 RNA in stool ranged from 10 months to 78 years old. The duration time of positive stool results ranged from 1 to 12 days. Furthermore, 17 (23.29%) patients continued to have positive results in stool after showing negative results in respiratory samples. Gastrointestinal endoscopy was performed on a patient as described in the Supplementary Case Clinical Information. As shown in Figure 1, the mucous epithelium of esophagus, stomach, duodenum, and rectum showed no significant damage with H&E staining. Infiltrate of occasional lymphocytes was observed in esophageal squamous epithelium. In lamina propria of the stomach, duodenum, and rectum, numerous infiltrating plasma cells and lymphocytes with interstitial edema were seen. Importantly, viral host receptor ACE2 stained positive mainly in the cytoplasm of gastrointestinal epithelial cells (Figure 1). We observed that ACE2 is rarely expressed in esophageal epithelium but is abundantly distributed in the cilia of the glandular epithelia. Staining of viral nucleocapsid protein was visualized in the cytoplasm of gastric, duodenal, and rectum glandular epithelial cell, but not in esophageal epithelium. The positive staining of ACE2 and SARS-CoV-2 was also observed in gastrointestinal epithelium from other patients who tested positive for SARS-CoV-2 RNA in feces (data not shown). Discussion In this article, we provide evidence for gastrointestinal infection of SARS-CoV-2 and its possible fecal-oral transmission route. Because viruses spread from infected to uninfected cells, 6 viral-specific target cells or organs are determinants of viral transmission routes. Receptor-mediated viral entry into a host cell is the first step of viral infection. Our immunofluorescent data showed that ACE2 protein, which has been proven to be a cell receptor for SARS-CoV-2, is abundantly expressed in the glandular cells of gastric, duodenal, and rectal epithelia, supporting the entry of SARS-CoV-2 into the host cells. ACE2 staining is rarely seen in esophageal mucosa, probably because the esophageal epithelium is mainly composed of squamous epithelial cells, which express less ACE2 than glandular epithelial cells. Our results of SARS-CoV-2 RNA detection and intracellular staining of viral nucleocapsid protein in gastric, duodenal, and rectal epithelia demonstrate that SARS-CoV-2 infects these gastrointestinal glandular epithelial cells. Although viral RNA was also detected in esophageal mucous tissue, absence of viral nucleocapsid protein staining in esophageal mucosa indicates low viral infection in esophageal mucosa. After viral entry, virus-specific RNA and proteins are synthesized in the cytoplasm to assemble new virions, 7 which can be released to the gastrointestinal tract. The continuous positive detection of viral RNA from feces suggests that the infectious virions are secreted from the virus-infected gastrointestinal cells. Recently, we and others have isolated infectious SARS-CoV-2 from stool (unpublished data), confirming the release of the infectious virions to the gastrointestinal tract. Therefore, fecal-oral transmission could be an additional route for viral spread. Prevention of fecal-oral transmission should be taken into consideration to control the spread of the virus. Our results highlight the clinical significance of testing viral RNA in feces by real-time reverse transcriptase polymerase chain reaction (rRT-PCR) because infectious virions released from the gastrointestinal tract can be monitored by the test. According to the current Centers for Disease Control and Prevention guidance for the disposition of patients with SARS-CoV-2, the decision to discontinue transmission-based precautions for hospitalized patients with SARS-CoV-2 is based on negative results rRT-PCR testing for SARS-CoV-2 from at least 2 sequential respiratory tract specimens collected ≥24 hours apart. 8 However, in more than 20% of patients with SARS-CoV-2, we observed that the test result for viral RNA remained positive in feces, even after test results for viral RNA in the respiratory tract converted to negative, indicating that the viral gastrointestinal infection and potential fecal-oral transmission can last even after viral clearance in the respiratory tract. Therefore, we strongly recommend that rRT-PCR testing for SARS-CoV-2 from feces should be performed routinely in patients with SARS-CoV-2 and that transmission-based precautions for hospitalized patients with SARS-CoV-2 should continue if feces test results are positive by rRT-PCR testing.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Water Process Engineering
                Journal of Water Process Engineering
                Elsevier BV
                22147144
                June 2021
                June 2021
                : 41
                : 101990
                Article
                10.1016/j.jwpe.2021.101990
                693cd7f4-80de-439e-8f04-23f07549f6a8
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article