23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Venezuelan Equine Encephalitis Virus Capsid—The Clever Caper

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Venezuelan equine encephalitis virus (VEEV) is a New World alphavirus that is vectored by mosquitos and cycled in rodents. It can cause disease in equines and humans characterized by a febrile illness that may progress into encephalitis. Like the capsid protein of other viruses, VEEV capsid is an abundant structural protein that binds to the viral RNA and interacts with the membrane-bound glycoproteins. It also has protease activity, allowing cleavage of itself from the growing structural polypeptide during translation. However, VEEV capsid protein has additional nonstructural roles within the host cell functioning as the primary virulence factor for VEEV. VEEV capsid inhibits host transcription and blocks nuclear import in mammalian cells, at least partially due to its complexing with the host CRM1 and importin α/β1 nuclear transport proteins. VEEV capsid also shuttles between the nucleus and cytoplasm and is susceptible to inhibitors of nuclear trafficking, making it a promising antiviral target. Herein, the role of VEEV capsid in viral replication and pathogenesis will be discussed including a comparison to proteins of other alphaviruses.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          A structural and functional perspective of alphavirus replication and assembly.

          Alphaviruses are small, spherical, enveloped, positive-sense ssRNA viruses responsible for a considerable number of human and animal diseases. Alphavirus members include Chikungunya virus, Sindbis virus, Semliki Forest virus, the western, eastern and Venezuelan equine encephalitis viruses, and the Ross River virus. Alphaviruses can cause arthritic diseases and encephalitis in humans and animals and continue to be a worldwide threat. The viruses are transmitted by blood-sucking arthropods, and replicate in both arthropod and vertebrate hosts. Alphaviruses form spherical particles (65-70 nm in diameter) with icosahedral symmetry and a triangulation number of four. The icosahedral structures of alphaviruses have been defined to very high resolutions by cryo-electron microscopy and crystallographic studies. In this review, we summarize the major events in alphavirus infection: entry, replication, assembly and budding. We focus on data acquired from structural and functional studies of the alphaviruses. These structural and functional data provide a broader perspective of the virus lifecycle and structure, and allow additional insight into these important viruses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Encephalitic alphaviruses.

            This review will cover zoonotic, encephalitic alphaviruses in the family Togaviridae. Encephalitic alphaviruses, i.e. Western- (WEEV), Eastern- (EEEV), Venezuelan equine encephalitis virus (VEEV) and, more rarely, Ross River virus, Chikungunya virus and Highlands J virus (HJV), are neuroinvasive and may cause neurological symptoms ranging from mild (e.g., febrile illness) to severe (e.g., encephalitis) in humans and equines. Among the naturally occurring alphaviruses, WEEV, EEEV and VEEV have widespread distributions in North, Central and South America. WEEV has found spanning the U.S. from the mid-West (Michigan and Illinois) to the West coast and extending to Canada with human cases reported in 21 states. EEEV is found along the Gulf (Texas to Florida) and Atlantic Coast (Georgia to New Hampshire), as well as in the mid-West (Wisconsin, Illinois and Michigan) and in Canada, with human cases reported in 19 states. In contrast, transmission of VEEV occurs predominantly in Central and South America. As with their geographical distribution, equine encephalitis viruses differ in their main mosquito vector species and their zoonotic potential. Copyright 2009 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling.

              Chikungunya virus (CHIKV) is an emerging human pathogen transmitted by mosquitoes. Like that of other alphaviruses, CHIKV replication causes general host shutoff, leading to severe cytopathicity in mammalian cells, and inhibits the ability of infected cells to respond to interferon (IFN). Recent research, however, suggests that alphaviruses may have additional mechanisms to circumvent the host's antiviral IFN response. Here we show that CHIKV replication is resistant to inhibition by interferon once RNA replication has been established and that CHIKV actively suppresses the antiviral IFN response by preventing IFN-induced gene expression. Both CHIKV infection and CHIKV replicon RNA replication efficiently blocked STAT1 phosphorylation and/or nuclear translocation in mammalian cells induced by either type I or type II IFN. Expression of individual CHIKV nonstructural proteins (nsPs) showed that nsP2 was a potent inhibitor of IFN-induced JAK-STAT signaling. In addition, mutations in CHIKV-nsP2 (P718S) and Sindbis virus (SINV)-nsP2 (P726S) that render alphavirus replicons noncytopathic significantly reduced JAK-STAT inhibition. This host shutoff-independent inhibition of IFN signaling by CHIKV is likely to have an important role in viral pathogenesis.
                Bookmark

                Author and article information

                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                29 September 2017
                October 2017
                : 9
                : 10
                : 279
                Affiliations
                National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; lhill10@ 123456masonlive.gmu.edu (L.L.); bcarey4@ 123456masonlive.gmu.edu (B.C.)
                Author notes
                [* ]Correspondence: kkehnhal@ 123456gmu.edu ; Tel.: +1-703-993-8869
                Author information
                https://orcid.org/0000-0002-5493-3880
                Article
                viruses-09-00279
                10.3390/v9100279
                5691631
                28961161
                693a2cdb-2553-42c6-a013-e9cd68c8a437
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 September 2017
                : 26 September 2017
                Categories
                Review

                Microbiology & Virology
                veev,eastern equine encephalitis virus,western equine encephalitis virus,capsid,crm1,importin

                Comments

                Comment on this article