16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolution of Life on Earth: tRNA, Aminoacyl-tRNA Synthetases and the Genetic Code

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Life on Earth and the genetic code evolved around tRNA and the tRNA anticodon. We posit that the genetic code initially evolved to synthesize polyglycine as a cross-linking agent to stabilize protocells. We posit that the initial amino acids to enter the code occupied larger sectors of the code that were then invaded by incoming amino acids. Displacements of amino acids follow selection rules. The code sectored from a glycine code to a four amino acid code to an eight amino acid code to an ~16 amino acid code to the standard 20 amino acid code with stops. The proposed patterns of code sectoring are now most apparent from patterns of aminoacyl-tRNA synthetase evolution. The Elongation Factor-Tu GTPase anticodon-codon latch that checks the accuracy of translation appears to have evolved at about the eight amino acid to ~16 amino acid stage. Before evolution of the EF-Tu latch, we posit that both the 1st and 3rd anticodon positions were wobble positions. The genetic code evolved via tRNA charging errors and via enzymatic modifications of amino acids joined to tRNAs, followed by tRNA and aminoacyl-tRNA synthetase differentiation. Fidelity mechanisms froze the code by inhibiting further innovation.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Bacterial cell wall synthesis: new insights from localization studies.

          In order to maintain shape and withstand intracellular pressure, most bacteria are surrounded by a cell wall that consists mainly of the cross-linked polymer peptidoglycan (PG). The importance of PG for the maintenance of bacterial cell shape is underscored by the fact that, for various bacteria, several mutations affecting PG synthesis are associated with cell shape defects. In recent years, the application of fluorescence microscopy to the field of PG synthesis has led to an enormous increase in data on the relationship between cell wall synthesis and bacterial cell shape. First, a novel staining method enabled the visualization of PG precursor incorporation in live cells. Second, penicillin-binding proteins (PBPs), which mediate the final stages of PG synthesis, have been localized in various model organisms by means of immunofluorescence microscopy or green fluorescent protein fusions. In this review, we integrate the knowledge on the last stages of PG synthesis obtained in previous studies with the new data available on localization of PG synthesis and PBPs, in both rod-shaped and coccoid cells. We discuss a model in which, at least for a subset of PBPs, the presence of substrate is a major factor in determining PBP localization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Origin and evolution of the genetic code: the universal enigma.

            The genetic code is nearly universal, and the arrangement of the codons in the standard codon table is highly nonrandom. The three main concepts on the origin and evolution of the code are the stereochemical theory, according to which codon assignments are dictated by physicochemical affinity between amino acids and the cognate codons (anticodons); the coevolution theory, which posits that the code structure coevolved with amino acid biosynthesis pathways; and the error minimization theory under which selection to minimize the adverse effect of point mutations and translation errors was the principal factor of the code's evolution. These theories are not mutually exclusive and are also compatible with the frozen accident hypothesis, that is, the notion that the standard code might have no special properties but was fixed simply because all extant life forms share a common ancestor, with subsequent changes to the code, mostly, precluded by the deleterious effect of codon reassignment. Mathematical analysis of the structure and possible evolutionary trajectories of the code shows that it is highly robust to translational misreading but there are numerous more robust codes, so the standard code potentially could evolve from a random code via a short sequence of codon series reassignments. Thus, much of the evolution that led to the standard code could be a combination of frozen accident with selection for error minimization although contributions from coevolution of the code with metabolic pathways and weak affinities between amino acids and nucleotide triplets cannot be ruled out. However, such scenarios for the code evolution are based on formal schemes whose relevance to the actual primordial evolution is uncertain. A real understanding of the code origin and evolution is likely to be attainable only in conjunction with a credible scenario for the evolution of the coding principle itself and the translation system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land

              Background The timescale of prokaryote evolution has been difficult to reconstruct because of a limited fossil record and complexities associated with molecular clocks and deep divergences. However, the relatively large number of genome sequences currently available has provided a better opportunity to control for potential biases such as horizontal gene transfer and rate differences among lineages. We assembled a data set of sequences from 32 proteins (~7600 amino acids) common to 72 species and estimated phylogenetic relationships and divergence times with a local clock method. Results Our phylogenetic results support most of the currently recognized higher-level groupings of prokaryotes. Of particular interest is a well-supported group of three major lineages of eubacteria (Actinobacteria, Deinococcus, and Cyanobacteria) that we call Terrabacteria and associate with an early colonization of land. Divergence time estimates for the major groups of eubacteria are between 2.5–3.2 billion years ago (Ga) while those for archaebacteria are mostly between 3.1–4.1 Ga. The time estimates suggest a Hadean origin of life (prior to 4.1 Ga), an early origin of methanogenesis (3.8–4.1 Ga), an origin of anaerobic methanotrophy after 3.1 Ga, an origin of phototrophy prior to 3.2 Ga, an early colonization of land 2.8–3.1 Ga, and an origin of aerobic methanotrophy 2.5–2.8 Ga. Conclusions Our early time estimates for methanogenesis support the consideration of methane, in addition to carbon dioxide, as a greenhouse gas responsible for the early warming of the Earths' surface. Our divergence times for the origin of anaerobic methanotrophy are compatible with highly depleted carbon isotopic values found in rocks dated 2.8–2.6 Ga. An early origin of phototrophy is consistent with the earliest bacterial mats and structures identified as stromatolites, but a 2.6 Ga origin of cyanobacteria suggests that those Archean structures, if biologically produced, were made by anoxygenic photosynthesizers. The resistance to desiccation of Terrabacteria and their elaboration of photoprotective compounds suggests that the common ancestor of this group inhabited land. If true, then oxygenic photosynthesis may owe its origin to terrestrial adaptations.
                Bookmark

                Author and article information

                Journal
                Life (Basel)
                Life (Basel)
                life
                Life
                MDPI
                2075-1729
                02 March 2020
                March 2020
                : 10
                : 3
                : 21
                Affiliations
                [1 ]Department of Biology, University of New England, Biddeford, ME 04005, USA; llei@ 123456une.edu
                [2 ]Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI 48824-1319, USA
                Author notes
                [* ]Correspondence: burton@ 123456msu.edu ; Tel.: +1-517-881-2243; Fax: +1-517-353-9334
                Author information
                https://orcid.org/0000-0003-1065-5222
                Article
                life-10-00021
                10.3390/life10030021
                7151597
                32131473
                69135e8e-ba8f-480c-abac-00a58b137302
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 January 2020
                : 27 February 2020
                Categories
                Review

                aminoacyl-trna synthetase,elongation factor-tu latch,evolution,genetic code,last universal common cellular ancestor,origin of life,polyglycine,trna

                Comments

                Comment on this article