25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A ‘big data’ approach to global freshwater mussel diversity (Bivalvia: Unionoida), with an updated checklist of genera and species

      1 , 2
      Journal of Molluscan Studies
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The objective of this review is to update our previously published checklist of Recent freshwater mussel species and genera (Graf & Cummings, 2007, J. Molluscan Stud.: 291–314) to reflect the new data and research findings that have accumulated over the last decade. The MUSSEL Project Database was developed to synthesize the available taxonomic nomenclature, species ranges and published taxonomic hypotheses on genus–species combinations and synonymy. We have found 4,988 available species-group level nominal species representing 958 valid species in 192 genera worldwide, an increase of 118 species since 2007. The current patterns of species richness are discussed with regard to both taxonomy and geography, as is the general flux in the number of species recognized over time. A checklist is provided herein, with a bibliography to key faunistic and taxonomic references. The full dataset is maintained and updated on the MUSSEL Project Web Site (http://mussel-project.net/).

          Related collections

          Most cited references265

          • Record: found
          • Abstract: found
          • Article: not found

          Freshwater biodiversity: importance, threats, status and conservation challenges.

          Freshwater biodiversity is the over-riding conservation priority during the International Decade for Action - 'Water for Life' - 2005 to 2015. Fresh water makes up only 0.01% of the World's water and approximately 0.8% of the Earth's surface, yet this tiny fraction of global water supports at least 100000 species out of approximately 1.8 million - almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the 'Water for Life' decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as 'receivers' of land-use effluents, and the problems posed by endemism and thus non-substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge because it is influenced by the upstream drainage network, the surrounding land, the riparian zone, and - in the case of migrating aquatic fauna - downstream reaches. Such prerequisites are hardly ever met. Immediate action is needed where opportunities exist to set aside intact lake and river ecosystems within large protected areas. For most of the global land surface, trade-offs between conservation of freshwater biodiversity and human use of ecosystem goods and services are necessary. We advocate continuing attempts to check species loss but, in many situations, urge adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods in order to provide a viable long-term basis for freshwater conservation. Recognition of this need will require adoption of a new paradigm for biodiversity protection and freshwater ecosystem management - one that has been appropriately termed 'reconciliation ecology'.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emerging threats and persistent conservation challenges for freshwater biodiversity

            In the 12 years since Dudgeon et al. (2006) reviewed major pressures on freshwater ecosystems, the biodiversity crisis in the world's lakes, reservoirs, rivers, streams and wetlands has deepened. While lakes, reservoirs and rivers cover only 2.3% of the Earth's surface, these ecosystems host at least 9.5% of the Earth's described animal species. Furthermore, using the World Wide Fund for Nature's Living Planet Index, freshwater population declines (83% between 1970 and 2014) continue to outpace contemporaneous declines in marine or terrestrial systems. The Anthropocene has brought multiple new and varied threats that disproportionately impact freshwater systems. We document 12 emerging threats to freshwater biodiversity that are either entirely new since 2006 or have since intensified: (i) changing climates; (ii) e-commerce and invasions; (iii) infectious diseases; (iv) harmful algal blooms; (v) expanding hydropower; (vi) emerging contaminants; (vii) engineered nanomaterials; (viii) microplastic pollution; (ix) light and noise; (x) freshwater salinisation; (xi) declining calcium; and (xii) cumulative stressors. Effects are evidenced for amphibians, fishes, invertebrates, microbes, plants, turtles and waterbirds, with potential for ecosystem-level changes through bottom-up and top-down processes. In our highly uncertain future, the net effects of these threats raise serious concerns for freshwater ecosystems. However, we also highlight opportunities for conservation gains as a result of novel management tools (e.g. environmental flows, environmental DNA) and specific conservation-oriented actions (e.g. dam removal, habitat protection policies, managed relocation of species) that have been met with varying levels of success. Moving forward, we advocate hybrid approaches that manage fresh waters as crucial ecosystems for human life support as well as essential hotspots of biodiversity and ecological function. Efforts to reverse global trends in freshwater degradation now depend on bridging an immense gap between the aspirations of conservation biologists and the accelerating rate of species endangerment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Species concepts and species delimitation.

              The issue of species delimitation has long been confused with that of species conceptualization, leading to a half century of controversy concerning both the definition of the species category and methods for inferring the boundaries and numbers of species. Alternative species concepts agree in treating existence as a separately evolving metapopulation lineage as the primary defining property of the species category, but they disagree in adopting different properties acquired by lineages during the course of divergence (e.g., intrinsic reproductive isolation, diagnosability, monophyly) as secondary defining properties (secondary species criteria). A unified species concept can be achieved by treating existence as a separately evolving metapopulation lineage as the only necessary property of species and the former secondary species criteria as different lines of evidence (operational criteria) relevant to assessing lineage separation. This unified concept of species has several consequences for species delimitation, including the following: First, the issues of species conceptualization and species delimitation are clearly separated; the former secondary species criteria are no longer considered relevant to species conceptualization but only to species delimitation. Second, all of the properties formerly treated as secondary species criteria are relevant to species delimitation to the extent that they provide evidence of lineage separation. Third, the presence of any one of the properties (if appropriately interpreted) is evidence for the existence of a species, though more properties and thus more lines of evidence are associated with a higher degree of corroboration. Fourth, and perhaps most significantly, a unified species concept shifts emphasis away from the traditional species criteria, encouraging biologists to develop new methods of species delimitation that are not tied to those properties.
                Bookmark

                Author and article information

                Journal
                Journal of Molluscan Studies
                Oxford University Press (OUP)
                0260-1230
                1464-3766
                March 2021
                February 23 2021
                March 2021
                February 23 2021
                February 05 2021
                : 87
                : 1
                Affiliations
                [1 ]Department of Biology, University of Wisconsin—Stevens Point, Stevens Point, WI 54481, USA
                [2 ]Prairie Research Institute, Illinois Natural History Survey, Champaign, IL 61820, USA
                Article
                10.1093/mollus/eyaa034
                6906c752-c81d-47f1-b709-2e32493fe727
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article