33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Zip4 Mediated Zinc Influx Stimulates Insulin Secretion in Pancreatic Beta Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Zinc has an important role in normal pancreatic beta cell physiology as it regulates gene transcription, insulin crystallization and secretion, and cell survival. Nevertheless, little is known about how zinc is transported through the plasma membrane of beta cells and which of the class of zinc influx transporters (Zip) is involved. Zip4 was previously shown to be expressed in human and mouse beta cells; however, its function there is still unknown. Therefore, the aim of this study was to define the zinc transport role of Zip4 in beta cells. To investigate this, Zip4 was over-expressed in MIN6 beta cells using a pCMV6-Zip4GFP plasmid. Organelle staining combined with confocal microscopy showed that Zip4 exhibits a widespread localization in MIN6 cells. Time-lapse zinc imaging experiments showed that Zip4 increases cytoplasmic zinc levels. This resulted in increased granular zinc content and glucose-stimulated insulin secretion. Interestingly, it is unlikely that the increased glucose stimulated insulin secretion was triggered by a modulation of mitochondrial function, as mitochondrial membrane potential remained unchanged. To define the role of Zip4 in-vivo, we generated a beta cell-specific knockout mouse model (Zip4BKO). Deletion of the Zip4 gene was confirmed in Zip4BKO islets by PCR, RT-PCR, and immuno-histochemistry. Zip4BKO mice showed slightly improved glucose homeostasis but no change in insulin secretion during an oral glucose tolerance test. While Zip4 was not found to be essential for proper glucose homeostasis and insulin secretion in vivo in mice, this study also found that Zip4 mediates increases in cytoplasmic and granular zinc pools and stimulates glucose dependant insulin secretion in-vitro.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis.

          For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A genome-wide association study identifies novel risk loci for type 2 diabetes.

            Type 2 diabetes mellitus results from the interaction of environmental factors with a combination of genetic variants, most of which were hitherto unknown. A systematic search for these variants was recently made possible by the development of high-density arrays that permit the genotyping of hundreds of thousands of polymorphisms. We tested 392,935 single-nucleotide polymorphisms in a French case-control cohort. Markers with the most significant difference in genotype frequencies between cases of type 2 diabetes and controls were fast-tracked for testing in a second cohort. This identified four loci containing variants that confer type 2 diabetes risk, in addition to confirming the known association with the TCF7L2 gene. These loci include a non-synonymous polymorphism in the zinc transporter SLC30A8, which is expressed exclusively in insulin-producing beta-cells, and two linkage disequilibrium blocks that contain genes potentially involved in beta-cell development or function (IDE-KIF11-HHEX and EXT2-ALX4). These associations explain a substantial portion of disease risk and constitute proof of principle for the genome-wide approach to the elucidation of complex genetic traits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Zinc transporters and the cellular trafficking of zinc.

              David Eide (2006)
              Zinc is an essential nutrient for all organisms because this metal serves as a catalytic or structural cofactor for many different proteins. Zinc-dependent proteins are found in the cytoplasm and within many organelles of the eukaryotic cell including the nucleus, the endoplasmic reticulum, Golgi, secretory vesicles, and mitochondria. Thus, cells require zinc transport mechanisms to allow cells to efficiently accumulate the metal ion and distribute it within the cell. Our current knowledge of these transport systems in eukaryotes is the focus of this review.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                25 March 2015
                2015
                : 10
                : 3
                : e0119136
                Affiliations
                [1 ]Department of Physiology, University of Toronto, Toronto, Ontario, Canada
                [2 ]University of Kansas Medical Center, Kansas City, Kansas, United States of America
                University of British Columbia, CANADA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ABH KJP SF YL GKA MBW. Performed the experiments: ABH KJP. Analyzed the data: ABH KJP SF YL GKA MBW. Contributed reagents/materials/analysis tools: ABH KJP SF YL GKA MBW. Wrote the paper: ABH. Contributed to discussion: ABH KJP SF YL GKA MBW. Reviewed and edited the manuscript: ABH KJP SF YL GKA MBW

                Article
                PONE-D-14-19612
                10.1371/journal.pone.0119136
                4373830
                25806541
                68e3ebd3-7e8d-47c6-a6dd-29ea15c332cc
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 1 May 2014
                : 19 January 2015
                Page count
                Figures: 8, Tables: 1, Pages: 18
                Funding
                This work was supported by a grant from the Canadian Institutes of Health Research (CIHR; MOP-102588) to M.B. Wheeler. K.J. Prentice was supported by a CIHR doctoral research award. S. Froese was supported by an Ontario Graduate Scholarship and Y. Liu was supported by a Banting and Best Postdoctoral fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article