9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Frequency-dependent changes in fractional amplitude of low-frequency oscillations in Alzheimer’s disease: a resting-state fMRI study

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer's disease (AD) is the most common neurodegenerative disease in elderly individuals. We conducted this study to examine whether alterations in the fractional amplitudes of low-frequency fluctuations (fALFF) in the AD spectrum were frequency-dependent and symptom-relevant. A total of 43 patients with subjective cognitive decline (SCD), 52 with amnestic mild cognitive impairment (aMCI), 44 with Alzheimer's dementia (d-AD) and 55 well-matched controls participated in resting-state functional magnetic resonance imaging (rs-fMRI) scans. The amplitudes were measured using fALFF within the slow-4 (0.027-0.073 Hz) and slow-5 (0.01-0.027 Hz) bands. Repeated-measures analysis of variance was performed on fALFF within two bands and correlated with neuropsychological test scores. The significant main effects of frequency and group on fALFF differed widely across brain regions. There were more varied areas in the slow-5 band than the slow-4 band. The fALFF associated with primary disease effects was mainly distributed in the parietal lobe. Obvious frequency band and group interaction effects were observed in the left angular gyrus, left calcarine fissure and surrounding cortex, left superior cerebellum, left cuneus and right lingual gyrus. Neuropsychological tests scores were significantly correlated with the fALFF magnitude of the left cuneus and right lingual in the slow-5 band. Our results suggested that the AD continuum had abnormal amplitudes in intrinsic brain activity, and these abnormalities were frequency-dependent and mainly associated with the slow-5 band rather than the slow-4 band. This may guide the frequency choice of future rs-fMRI studies and provide new insights into the neuropathophysiology of AD.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI.

          In children with attention deficit hyperactivity disorder (ADHD), functional neuroimaging studies have revealed abnormalities in various brain regions, including prefrontal-striatal circuit, cerebellum, and brainstem. In the current study, we used a new marker of functional magnetic resonance imaging (fMRI), amplitude of low-frequency (0.01-0.08Hz) fluctuation (ALFF) to investigate the baseline brain function of this disorder. Thirteen boys with ADHD (13.0+/-1.4 years) were examined by resting-state fMRI and compared with age-matched controls. As a result, we found that patients with ADHD had decreased ALFF in the right inferior frontal cortex, [corrected] and bilateral cerebellum and the vermis as well as increased ALFF in the right anterior cingulated cortex, left sensorimotor cortex, and bilateral brainstem. This resting-state fMRI study suggests that the changed spontaneous neuronal activity of these regions may be implicated in the underlying pathophysiology in children with ADHD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A unified statistical approach for determining significant signals in images of cerebral activation.

            We present a unified statistical theory for assessing the significance of apparent signal observed in noisy difference images. The results are usable in a wide range of applications, including fMRI, but are discussed with particular reference to PET images which represent changes in cerebral blood flow elicited by a specific cognitive or sensorimotor task. Our main result is an estimate of the P-value for local maxima of Gaussian, t, chi(2) and F fields over search regions of any shape or size in any number of dimensions. This unifies the P-values for large search areas in 2-D (Friston et al. [1991]: J Cereb Blood Flow Metab 11:690-699) large search regions in 3-D (Worsley et al. [1992]: J Cereb Blood Flow Metab 12:900-918) and the usual uncorrected P-value at a single pixel or voxel. Copyright (c) 1996 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Motivation, emotion, and their inhibitory control mirrored in brain oscillations.

              Recent studies suggest brain oscillations as a mechanism for cerebral integration. Such integration can exist across a number of functional domains, with different frequency rhythms associated with each domain. Here, evidence is summarized which shows that delta oscillations depend on activity of motivational systems and participate in salience detection. Theta oscillations are involved in memory and emotional regulation. Alpha oscillations participate in inhibitory processes which contribute to a variety of cognitive operations such as attention and memory. The importance of inhibitory functions associated with alpha oscillations increases during the course of evolution. In ontogenesis, these functions develop later and may be more sensitive to a variety of detrimental environmental influences. In a number of developmental stages and pathological conditions, a deficient alpha and/or increased slow-wave activity are associated with cognitive deficits and a lack of inhibitory control. It is shown that slow-wave and alpha oscillations are reciprocally related to each other. This reciprocal relationship may reflect an inhibitory control over motivational and emotional drives which is implemented by the prefrontal cortex.
                Bookmark

                Author and article information

                Journal
                Brain Imaging and Behavior
                Brain Imaging and Behavior
                Springer Science and Business Media LLC
                1931-7557
                1931-7565
                September 2 2019
                Article
                10.1007/s11682-019-00169-6
                31478145
                68b1f347-1b1b-4a39-a15f-4b66dae87642
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article