Cardiovascular diseases (CVDs) pose a significant global health threat, responsible for a considerable portion of worldwide mortality. Flexible electronics enable continuous, noninvasive, real-time, and portable monitoring, providing an ideal platform for personalized healthcare. Nevertheless, challenges persist in sustaining stable adherence across diverse and intricate skin environments, hindering further advancement toward clinical applications. Strategies such as structural design and chemical modification can significantly enhance the environmental adaptability and monitoring performance of flexible electronics. This review delineates processing techniques, including structural design and chemical modification, to mitigate signal interference from sebaceous skin, motion artifacts from the skin in motion, and infection risks from fragile skin, thereby enabling the accurate monitoring of key cardiovascular indicators in complex physiological environments. Moreover, it delves into the potential for the strategic development and improvement of flexible electronics to ensure their alignment with complex physiological environment requirements, facilitating their transition to clinical applications.
Health sciences; Physics; Engineering
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.