16
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A comprehensive perspective on the interaction between gut microbiota and COVID-19 vaccines

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The efficacy of COVID-19 vaccines varies between individuals and populations, and the reasons for this are still not fully understood. Recent clinical studies and animal models have indicated that the gut microbiota may influence the immunogenicity of the vaccine and, thus, its effectiveness. This suggests that there is a bidirectional relationship between the gut microbiota and the COVID-19 vaccine, with the varying components of the microbiota either enhancing or reducing the vaccine’s efficacy. To put an end to the spread of the COVID-19 pandemic, the necessity of vaccines that create powerful and long-term immunity is now more important than ever, and understanding the role of the gut microbiota in this process is essential. Conversely, COVID-19 vaccines also have a significant effect on the gut microbiota, decreasing its total number of organisms and the variety of species present. In this Review, we analyze the evidence that suggesting an interaction between the gut microbiota and COVID-19 vaccine effectiveness, consider the immunological mechanisms that may be responsible for this connection, and explore the possibility of using gut microbiota-focused interventions to improve the efficacy of COVID-19 vaccines.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          A Bivalent Omicron-Containing Booster Vaccine against Covid-19

          Abstract Background The safety and immunogenicity of the bivalent omicron-containing mRNA-1273.214 booster vaccine are not known. Methods In this ongoing, phase 2–3 study, we compared the 50-μg bivalent vaccine mRNA-1273.214 (25 μg each of ancestral Wuhan-Hu-1 and omicron B.1.1.529 [BA.1] spike messenger RNAs) with the previously authorized 50-μg mRNA-1273 booster. We administered mRNA-1273.214 or mRNA-1273 as a second booster in adults who had previously received a two-dose (100-μg) primary series and first booster (50-μg) dose of mRNA-1273 (≥3 months earlier). The primary objectives were to assess the safety, reactogenicity, and immunogenicity of mRNA-1273.214 at 28 days after the booster dose. Results Interim results are presented. Sequential groups of participants received 50 μg of mRNA-1273.214 (437 participants) or mRNA-1273 (377 participants) as a second booster dose. The median time between the first and second boosters was similar for mRNA-1273.214 (136 days) and mRNA-1273 (134 days). In participants with no previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the geometric mean titers of neutralizing antibodies against the omicron BA.1 variant were 2372.4 (95% confidence interval [CI], 2070.6 to 2718.2) after receipt of the mRNA-1273.214 booster and 1473.5 (95% CI, 1270.8 to 1708.4) after receipt of the mRNA-1273 booster. In addition, 50-μg mRNA-1273.214 and 50-μg mRNA-1273 elicited geometric mean titers of 727.4 (95% CI, 632.8 to 836.1) and 492.1 (95% CI, 431.1 to 561.9), respectively, against omicron BA.4 and BA.5 (BA.4/5), and the mRNA-1273.214 booster also elicited higher binding antibody responses against multiple other variants (alpha, beta, gamma, and delta) than the mRNA-1273 booster. Safety and reactogenicity were similar with the two booster vaccines. Vaccine effectiveness was not assessed in this study; in an exploratory analysis, SARS-CoV-2 infection occurred in 11 participants after the mRNA-1273.214 booster and in 9 participants after the mRNA-1273 booster. Conclusions The bivalent omicron-containing vaccine mRNA-1273.214 elicited neutralizing antibody responses against omicron that were superior to those with mRNA-1273, without evident safety concerns. (Funded by Moderna; ClinicalTrials.gov number, NCT04927065.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation.

            The bodies of most animals are populated by highly complex and genetically diverse communities of microorganisms. The majority of these microbes reside within the intestines in largely stable but dynamically interactive climax communities that positively interact with their host. Studies from this laboratory have shown that stressor exposure impacts the stability of the microbiota and leads to bacterial translocation. The biological importance of these alterations, however, is not well understood. To determine whether the microbiome contributes to stressor-induced immunoenhancement, mice were exposed to a social stressor called social disruption (SDR), that increases circulating cytokines and primes the innate immune system for enhanced reactivity. Bacterial populations in the cecum were characterized using bacterial tag-encoded FLX amplicon pyrosequencing. Stressor exposure significantly changed the community structure of the microbiota, particularly when the microbiota were assessed immediately after stressor exposure. Most notably, stressor exposure decreased the relative abundance of bacteria in the genus Bacteroides, while increasing the relative abundance of bacteria in the genus Clostridium. The stressor also increased circulating levels of IL-6 and MCP-1, which were significantly correlated with stressor-induced changes to three bacterial genera (i.e., Coprococcus, Pseudobutyrivibrio, and Dorea). In follow up experiments, mice were treated with an antibiotic cocktail to determine whether reducing the microbiota would abrogate the stressor-induced increases in circulating cytokines. Exposure to SDR failed to increase IL-6 and MCP-1 in the antibiotic treated mice. These data show that exposure to SDR significantly affects bacterial populations in the intestines, and remarkably also suggest that the microbiota are necessary for stressor-induced increases in circulating cytokines. Copyright © 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Severe COVID-19 outcomes after full vaccination of primary schedule and initial boosters: pooled analysis of national prospective cohort studies of 30 million individuals in England, Northern Ireland, Scotland, and Wales

              Background Current UK vaccination policy is to offer future COVID-19 booster doses to individuals at high risk of serious illness from COVID-19, but it is still uncertain which groups of the population could benefit most. In response to an urgent request from the UK Joint Committee on Vaccination and Immunisation, we aimed to identify risk factors for severe COVID-19 outcomes (ie, COVID-19-related hospitalisation or death) in individuals who had completed their primary COVID-19 vaccination schedule and had received the first booster vaccine. Methods We constructed prospective cohorts across all four UK nations through linkages of primary care, RT-PCR testing, vaccination, hospitalisation, and mortality data on 30 million people. We included individuals who received primary vaccine doses of BNT162b2 (tozinameran; Pfizer–BioNTech) or ChAdOx1 nCoV-19 (Oxford–AstraZeneca) vaccines in our initial analyses. We then restricted analyses to those given a BNT162b2 or mRNA-1273 (elasomeran; Moderna) booster and had a severe COVID-19 outcome between Dec 20, 2021, and Feb 28, 2022 (when the omicron (B.1.1.529) variant was dominant). We fitted time-dependent Poisson regression models and calculated adjusted rate ratios (aRRs) and 95% CIs for the associations between risk factors and COVID-19-related hospitalisation or death. We adjusted for a range of potential covariates, including age, sex, comorbidities, and previous SARS-CoV-2 infection. Stratified analyses were conducted by vaccine type. We then did pooled analyses across UK nations using fixed-effect meta-analyses. Findings Between Dec 8, 2020, and Feb 28, 2022, 16 208 600 individuals completed their primary vaccine schedule and 13 836 390 individuals received a booster dose. Between Dec 20, 2021, and Feb 28, 2022, 59 510 (0·4%) of the primary vaccine group and 26 100 (0·2%) of those who received their booster had severe COVID-19 outcomes. The risk of severe COVID-19 outcomes reduced after receiving the booster (rate change: 8·8 events per 1000 person-years to 7·6 events per 1000 person-years). Older adults (≥80 years vs 18–49 years; aRR 3·60 [95% CI 3·45–3·75]), those with comorbidities (≥5 comorbidities vs none; 9·51 [9·07–9·97]), being male (male vs female; 1·23 [1·20–1·26]), and those with certain underlying health conditions—in particular, individuals receiving immunosuppressants (yes vs no; 5·80 [5·53–6·09])—and those with chronic kidney disease (stage 5 vs no; 3·71 [2·90–4·74]) remained at high risk despite the initial booster. Individuals with a history of COVID-19 infection were at reduced risk (infected ≥9 months before booster dose vs no previous infection; aRR 0·41 [95% CI 0·29–0·58]). Interpretation Older people, those with multimorbidity, and those with specific underlying health conditions remain at increased risk of COVID-19 hospitalisation and death after the initial vaccine booster and should, therefore, be prioritised for additional boosters, including novel optimised versions, and the increasing array of COVID-19 therapeutics. Funding National Core Studies–Immunity, UK Research and Innovation (Medical Research Council), Health Data Research UK, the Scottish Government, and the University of Edinburgh.
                Bookmark

                Author and article information

                Journal
                Gut Microbes
                Gut Microbes
                Gut Microbes
                Taylor & Francis
                1949-0976
                1949-0984
                11 July 2023
                2023
                11 July 2023
                : 15
                : 1
                : 2233146
                Affiliations
                [a ]Institute of Advanced Diagnostic and Clinical Medicine, Zhongshan City People’s Hospital; , Zhongshan, China
                [b ]Department of Anesthesiology, Zhongshan City People’s Hospital; , Zhongshan, China
                [c ]Department of Cardiovascular Center, Zhongshan City People’s Hospital; , Zhongshan, China
                [d ]Centre for Heart Lung Innovation, St Paul’s Hospital, University of British Columbia; , Vancouver, BC, Canada
                Author notes
                CONTACT Yong Yuan zshpyy2018@ 123456163.com Department of Cardiovascular Center, Zhongshan City People’s Hospital; , Zhongshan 528400, China
                Feng Xu feng.xu@ 123456hli.ubc.ca Centre for Heart Lung Innovation, St Paul’s Hospital, University of British Columbia; , Vancouver, BC V6Z 1Y6, Canada
                Weijia Wang richard8207@ 123456163.com Institute of Advanced Diagnostic and Clinical Medicine, Zhongshan city People’s Hospital; , Zhongshan 528400, China
                Article
                2233146
                10.1080/19490976.2023.2233146
                10337507
                37431857
                683f1190-450f-4eb3-b9dd-285255a4f9cd
                © 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

                History
                Page count
                Figures: 8, Tables: 2, References: 121, Pages: 1
                Categories
                Review Article
                Review

                Microbiology & Virology
                covid-19,vaccine efficacy,gut microbiota,immune responses,microbiota-targeted interventions

                Comments

                Comment on this article