8
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exonic WT1 pathogenic variants in 46,XY DSD associated with gonadoblastoma

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          The literature regarding gonadoblastoma risk in exonic Wilms’ tumor suppressor gene ( WT1) pathogenic variants is sparse. The aim of this study is to describe the phenotypic and genotypic characteristics of Asian–Indian patients with WT1 pathogenic variants and systematically review the literature on association of exonic WT1 pathogenic variants and gonadoblastoma.

          Design

          Combined retrospective–prospective analysis.

          Methods

          In this study, 46,XY DSD patients with WT1 pathogenic variants detected by clinical exome sequencing from a cohort of 150 index patients and their affected relatives were included. The PubMed database was searched for the literature on gonadoblastoma with exonic WT1 pathogenic variants.

          Results

          The prevalence of WT1 pathogenic variants among 46,XY DSD index patients was 2.7% (4/150). All the four patients had atypical genitalia and cryptorchidism. None of them had Wilms’ tumor till the last follow-up, whereas one patient had late-onset nephropathy. 11p13 deletion was present in one patient with aniridia. The family with p.Arg458Gln pathogenic variant had varied phenotypic spectrum of Frasier syndrome; two siblings had gonadoblastoma, one of them had growing teratoma syndrome (first to report with WT1). On literature review, of >100 exonic point pathogenic variants, only eight variants (p.Arg462Trp, p.Tyr177*, p.Arg434His, p.Met410Arg, p.Gln142*, p.Glu437Lys, p.Arg458*, and p.Arg458Gln) in WT1 were associated with gonadoblastoma in a total of 15 cases (including our two cases).

          Conclusions

          WT1 alterations account for 3% of 46,XY DSD patients in our cohort. 46,XY DSD patients harboring exonic WT1 pathogenic variants carry a small but definitive risk of gonadoblastoma; hence, these patients require a gonadoblastoma surveillance with a more stringent surveillance in those harboring a gonadoblastoma-associated variant.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Splicing mutations in human genetic disorders: examples, detection, and confirmation

          Precise pre-mRNA splicing, essential for appropriate protein translation, depends on the presence of consensus “cis” sequences that define exon-intron boundaries and regulatory sequences recognized by splicing machinery. Point mutations at these consensus sequences can cause improper exon and intron recognition and may result in the formation of an aberrant transcript of the mutated gene. The splicing mutation may occur in both introns and exons and disrupt existing splice sites or splicing regulatory sequences (intronic and exonic splicing silencers and enhancers), create new ones, or activate the cryptic ones. Usually such mutations result in errors during the splicing process and may lead to improper intron removal and thus cause alterations of the open reading frame. Recent research has underlined the abundance and importance of splicing mutations in the etiology of inherited diseases. The application of modern techniques allowed to identify synonymous and nonsynonymous variants as well as deep intronic mutations that affected pre-mRNA splicing. The bioinformatic algorithms can be applied as a tool to assess the possible effect of the identified changes. However, it should be underlined that the results of such tests are only predictive, and the exact effect of the specific mutation should be verified in functional studies. This article summarizes the current knowledge about the “splicing mutations” and methods that help to identify such changes in clinical diagnosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Donor splice-site mutations in WT1 are responsible for Frasier syndrome.

            Frasier syndrome (FS) is a rare disease defined by male pseudo-hermaphroditism and progressive glomerulopathy. Patients present with normal female external genitalia, streak gonads and XY karyotype and frequently develop gonadoblastoma. Glomerular symptoms consist of childhood proteinuria and nephrotic syndrome, characterized by unspecific focal and segmental glomerular sclerosis, progressing to end-stage renal failure in adolescence or early adulthood. No case of Wilms' tumour has been reported, even in patients with extended follow-up. In contrast with FS patients, most individuals with Denys-Drash syndrome (DDS; refs 6,7) have ambiguous genitalia or a female phenotype, an XY karyotype and dysgenetic gonads. Renal symptoms are characterized by diffuse mesangial sclerosis, usually before the age of one year, and patients frequently develop Wilms' tumour. Mutations of the Wilms'-tumour gene, WT1, cause different pathologies of the urogenital system, including DDS. WT1 is composed of ten exons and encodes a protein with four zinc-finger motifs and transcriptional and tumour-suppressor activities. Alternative splicing generates four isoforms: the fifth exon may or may not be present, and an alternative splice site in intron 9 allows the addition of three amino acids (KTS) between the third and fourth zinc fingers of WT1 (ref. 17). Here we demonstrate that FS is caused by mutations in the donor splice site in intron 9 of WT1, with the predicted loss of the +KTS isoform. Examination of WT1 transcripts indeed showed a diminution of the +KTS/-KTS isoform ratio in patients with FS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort

              Background Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively parallel sequencing targeted DSD gene panel which allows us to sequence all 64 known diagnostic DSD genes and candidate genes simultaneously. Results We analyzed DNA from the largest reported international cohort of patients with DSD (278 patients with 46,XY DSD and 48 with 46,XX DSD). Our targeted gene panel compares favorably with other sequencing platforms. We found a total of 28 diagnostic genes that are implicated in DSD, highlighting the genetic spectrum of this disorder. Sequencing revealed 93 previously unreported DSD gene variants. Overall, we identified a likely genetic diagnosis in 43% of patients with 46,XY DSD. In patients with 46,XY disorders of androgen synthesis and action the genetic diagnosis rate reached 60%. Surprisingly, little difference in diagnostic rate was observed between singletons and trios. In many cases our findings are informative as to the likely cause of the DSD, which will facilitate clinical management. Conclusions Our massively parallel sequencing targeted DSD gene panel represents an economical means of improving the genetic diagnostic capability for patients affected by DSD. Implementation of this panel in a large cohort of patients has expanded our understanding of the underlying genetic etiology of DSD. The inclusion of research candidate genes also provides an invaluable resource for future identification of novel genes. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1105-y) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                02 November 2021
                01 December 2021
                : 10
                : 12
                : 1522-1530
                Affiliations
                [1 ]Department of Endocrinology , Seth G S Medical College & KEM Hospital, Mumbai, India
                [2 ]Department of Endocrinology , Vydehi Institute of Medical Sciences and Research Centre, Bangalore, India
                [3 ]Department of Radiology , Seth G S Medical College & KEM Hospital, Mumbai, India
                Author notes
                Correspondence should be addressed to A R Lila: anuraglila@ 123456gmail.com

                *(S Arya and S Kumar contributed equally to this work)

                Author information
                http://orcid.org/0000-0002-9623-4471
                Article
                EC-21-0289
                10.1530/EC-21-0289
                8679883
                34727091
                67f7ba36-d314-4f24-9944-7f5e19480240
                © The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 21 September 2021
                : 02 November 2021
                Categories
                Research

                46,xy dsd,wt1 gene,gonadoblastoma,frasier syndrome
                46, xy dsd, wt1 gene, gonadoblastoma, frasier syndrome

                Comments

                Comment on this article