15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Xylitol’s Health Benefits beyond Dental Health: A Comprehensive Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Xylitol has been widely documented to have dental health benefits, such as reducing the risk for dental caries. Here we report on other health benefits that have been investigated for xylitol. In skin, xylitol has been reported to improve barrier function and suppress the growth of potential skin pathogens. As a non-digestible carbohydrate, xylitol enters the colon where it is fermented by members of the colonic microbiota; species of the genus Anaerostipes have been reported to ferment xylitol and produce butyrate. The most common Lactobacillus and Bifidobacterium species do not appear to be able to grow on xylitol. The non-digestible but fermentable nature of xylitol also contributes to a constipation relieving effect and improved bone mineral density. Xylitol also modulates the immune system, which, together with its antimicrobial activity contribute to a reduced respiratory tract infection, sinusitis, and otitis media risk. As a low caloric sweetener, xylitol may contribute to weight management. It has been suggested that xylitol also increases satiety, but these results are not convincing yet. The benefit of xylitol on metabolic health, in addition to the benefit of the mere replacement of sucrose, remains to be determined in humans. Additional health benefits of xylitol have thus been reported and indicate further opportunities but need to be confirmed in human studies.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The function of our microbiota: who is out there and what do they do?

          Current meta-omics developments provide a portal into the functional potential and activity of the intestinal microbiota. The comparative and functional meta-omics approaches have made it possible to get a molecular snap shot of microbial function at a certain time and place. To this end, metagenomics is a DNA-based approach, metatranscriptomics studies the total transcribed RNA, metaproteomics focuses on protein levels and metabolomics describes metabolic profiles. Notably, the metagenomic toolbox is rapidly expanding and has been instrumental in the generation of draft genome sequences of over 1000 human associated microorganisms as well as an astonishing 3.3 million unique microbial genes derived from the intestinal tract of over 100 European adults. Remarkably, it appeared that there are at least 3 clusters of co-occurring microbial species, termed enterotypes, that characterize the intestinal microbiota throughout various continents. The human intestinal microbial metagenome further revealed unique functions carried out in the intestinal environment and provided the basis for newly discovered mechanisms for signaling, vitamin production and glycan, amino-acid and xenobiotic metabolism. The activity and composition of the microbiota is affected by genetic background, age, diet, and health status of the host. In its turn the microbiota composition and activity influence host metabolism and disease development. Exemplified by the differences in microbiota composition and activity between breast- as compared to formula-fed babies, healthy and malnourished infants, elderly and centenarians as compared to youngsters, humans that are either lean or obese and healthy or suffering of inflammatory bowel diseases (IBD). In this review we will focus on our current understanding of the functionality of the human intestinal microbiota based on all available metagenome, metatranscriptome, and metaproteome results
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The small intestine microbiota, nutritional modulation and relevance for health.

            The intestinal microbiota plays a profound role in human health and extensive research has been dedicated to identify microbiota aberrations that are associated with disease. Most of this work has been targeting the large intestine and fecal microbiota, while the small intestine microbiota may also have a profound impact on various aspects of the host's physiology, including immune, metabolic and endocrine functions. This review highlights the recent advances made in the study of the human small intestine microbiota. In addition, it describes recent human and animal studies that underpin the importance of this part of the intestine for health of the host organism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties.

              Abstract Polyols are hydrogenated carbohydrates used as sugar replacers. Interest now arises because of their multiple potential health benefits. They are non-cariogenic (sugar-free tooth-friendly), low-glycaemic (potentially helpful in diabetes and cardiovascular disease), low-energy and low-insulinaemic (potentially helpful in obesity), low-digestible (potentially helpful in the colon), osmotic (colon-hydrating, laxative and purifying) carbohydrates. Such potential health benefits are reviewed. A major focus here is the glycaemic index (GI) of polyols as regards the health implications of low-GI foods. The literature on glycaemia and insulinaemia after polyol ingestion was analysed and expressed in the GI and insulinaemic index (II) modes, which yielded the values: erythritol 0, 2; xylitol 13, 11; sorbitol 9, 11; mannitol 0, 0; maltitol 35, 27; isomalt 9, 6; lactitol 6, 4; polyglycitol 39, 23. These values are all much lower than sucrose 65, 43 or glucose 100, 100. GI values on replacing sucrose were independent of both intake (up to 50 g) and the state of carbohydrate metabolism (normal, type 1 with artificial pancreas and type 2 diabetes mellitus). The assignment of foods and polyols to GI bands is considered, these being: high (> 70), intermediate (> 55-70), low (> 40-55), and very low (< 40) including non-glycaemic; the last aims to target particularly low-GI-carbohydrate-based foods. Polyols ranged from low to very low GI. An examination was made of the dietary factors affecting the GI of polyols and foods. Polyol and other food GI values could be used to estimate the GI of food mixtures containing polyols without underestimation. Among foods and polyols a departure of II from GI was observed due to fat elevating II and reducing GI. Fat exerted an additional negative influence on GI, presumed due to reduced rates of gastric emptying. Among the foods examined, the interaction was prominent with snack foods; this potentially damaging insulinaemia could be reduced using polyols. Improved glycated haemoglobin as a marker of glycaemic control was found in a 12-week study of type 2 diabetes mellitus patients consuming polyol, adding to other studies showing improved glucose control on ingestion of low-GI carbohydrate. In general some improvement in long-term glycaemic control was discernible on reducing the glycaemic load via GI by as little as 15-20 g daily. Similar amounts of polyols are normally acceptable. Although polyols are not essential nutrients, they contribute to clinically recognised maintenance of a healthy colonic environment and function. A role for polyols and polyol foods to hydrate the colonic contents and aid laxation is now recognised by physicians. Polyols favour saccharolytic anaerobes and aciduric organisms in the colon, purifying the colon of endotoxic, putrefying and pathological organisms, which has clinical relevance. Polyols also contribute towards short-chain organic acid formation for a healthy colonic epithelium. Polyol tooth-friendliness and reduced energy values are affirmed and add to the potential benefits. In regard to gastrointestinal tolerance, food scientists and nutritionists, physicians, and dentists have in their independent professional capacities each now described sensible approaches to the use and consumption of polyols.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                06 August 2019
                August 2019
                : 11
                : 8
                : 1813
                Affiliations
                Global Health & Nutrition Sciences, DuPont Nutrition & Biosciences, 02460 Kantvik, Finland
                Author notes
                [* ]Correspondence: arthur.ouwehand@ 123456dupont.com ; Tel.: +358-40-5956-353
                Author information
                https://orcid.org/0000-0001-8348-0633
                Article
                nutrients-11-01813
                10.3390/nu11081813
                6723878
                31390800
                67eb6f80-6068-4ad3-a2ec-470ca95e5a71
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 June 2019
                : 31 July 2019
                Categories
                Review

                Nutrition & Dietetics
                sugar alcohol,prebiotic,bowel function,immune function,respiratory tract infections,otitis media,sinusitis,weight management,satiety,bone health

                Comments

                Comment on this article