38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Basic Biology of PP2A in Hematologic Cells and Malignancies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reversible protein phosphorylation plays a crucial role in regulating cell signaling. In normal cells, phosphoregulation is tightly controlled by a network of protein kinases counterbalanced by several protein phosphatases. Deregulation of this delicate balance is widely recognized as a central mechanism by which cells escape external and internal self-limiting signals, eventually resulting in malignant transformation. A large fraction of hematologic malignancies is characterized by constitutive or unrestrained activation of oncogenic kinases. This is in part achieved by activating mutations, chromosomal rearrangements, or constitutive activation of upstream kinase regulators, in part by inactivation of their anti-oncogenic phosphatase counterparts. Protein phosphatase 2A (PP2A) represents a large family of cellular serine/threonine phosphatases with suspected tumor suppressive functions. In this review, we highlight our current knowledge about the complex structure and biology of these phosphatases in hematologic cells, thereby providing the rationale behind their diverse signaling functions. Eventually, this basic knowledge is a key to truly understand the tumor suppressive role of PP2A in leukemogenesis and to allow further rational development of therapeutic strategies targeting PP2A.

          Related collections

          Most cited references139

          • Record: found
          • Abstract: found
          • Article: not found

          The protein kinase complement of the human genome.

          G. Manning (2002)
          We have catalogued the protein kinase complement of the human genome (the "kinome") using public and proprietary genomic, complementary DNA, and expressed sequence tag (EST) sequences. This provides a starting point for comprehensive analysis of protein phosphorylation in normal and disease states, as well as a detailed view of the current state of human genome analysis through a focus on one large gene family. We identify 518 putative protein kinase genes, of which 71 have not previously been reported or described as kinases, and we extend or correct the protein sequences of 56 more kinases. New genes include members of well-studied families as well as previously unidentified families, some of which are conserved in model organisms. Classification and comparison with model organism kinomes identified orthologous groups and highlighted expansions specific to human and other lineages. We also identified 106 protein kinase pseudogenes. Chromosomal mapping revealed several small clusters of kinase genes and revealed that 244 kinases map to disease loci or cancer amplicons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting the cancer kinome through polypharmacology.

            Kinase inhibitors are the largest class of new cancer drugs. However, it is already apparent that most tumours can escape from the inhibition of any single kinase. If it is necessary to inhibit multiple kinases, how do we choose which ones? In this Opinion article, we discuss some of the strategies that are currently being used to identify new therapeutic combinations of kinase targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis.

              Entry into mitosis in eukaryotes requires the activity of cyclin-dependent kinase 1 (Cdk1). Cdk1 is opposed by protein phosphatases in two ways: They inhibit activation of Cdk1 by dephosphorylating the protein kinases Wee1 and Myt1 and the protein phosphatase Cdc25 (key regulators of Cdk1), and they also antagonize Cdk1's own phosphorylation of downstream targets. A particular form of protein phosphatase 2A (PP2A) containing a B55δ subunit (PP2A- B55δ) is the major protein phosphatase that acts on model CDK substrates in Xenopus egg extracts and has antimitotic activity. The activity of PP2A-B55δ is high in interphase and low in mitosis, exactly opposite that of Cdk1. We report that inhibition of PP2A-B55δ results from a small protein, known as α-endosulfine (Ensa), that is phosphorylated in mitosis by the protein kinase Greatwall (Gwl). This converts Ensa into a potent and specific inhibitor of PP2A-B55δ. This pathway represents a previously unknown element in the control of mitosis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                07 November 2014
                11 December 2014
                2014
                : 4
                : 347
                Affiliations
                [1] 1Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven, Belgium
                [2] 2Gene Expression Unit, Department Cellular and Molecular Medicine, University of Leuven , Leuven, Belgium
                Author notes

                Edited by: Peter Ruvolo, The University of Texas MD Anderson Cancer Center, USA

                Reviewed by: Renae Barr, University of Western Australia, Australia; Peter Ruvolo, The University of Texas MD Anderson Cancer Center, USA

                *Correspondence: Veerle Janssens, Gasthuisberg O&N1, Herestraat 49, PO-Box 901, Leuven B-3000, Belgium e-mail: veerle.janssens@ 123456med.kuleuven.be

                Dorien Haesen and Ward Sents have contributed equally to this work.

                This article was submitted to Hematology Oncology, a section of the journal Frontiers in Oncology.

                Article
                10.3389/fonc.2014.00347
                4263090
                25566494
                67eb5fb0-aac9-4125-9081-83dcf220a269
                Copyright © 2014 Haesen, Sents, Lemaire, Hoorne and Janssens.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 October 2014
                : 20 November 2014
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 149, Pages: 11, Words: 10574
                Categories
                Oncology
                Hypothesis and Theory

                Oncology & Radiotherapy
                pp2a,subunit,inhibitor,tumor suppressor reactivation therapy,pp2a-activating drugs

                Comments

                Comment on this article