22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      CAR T cell therapies for patients with multiple myeloma

      ,
      Nature Reviews Clinical Oncology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d8125311e69">Despite several therapeutic advances over the past decade, multiple myeloma (MM) remains largely incurable, indicating a need for new treatment approaches. Chimeric antigen receptor (CAR) T cell therapy works by mechanisms distinct from those of other MM therapies and involves the modification of patient or donor T cells to target specific cell-surface antigens. B cell maturation antigen (BCMA) is expressed only on plasma cells, a small subset of B cells and MM cells, which makes it a suitable target antigen for such therapies. At the time of writing, data from &gt;20 clinical trials involving anti-BCMA CAR T cells have demonstrated that patients with relapsed and/or refractory MM can achieve objective responses. These early investigations have been instrumental in demonstrating short-term safety and efficacy; however, most patients do not have disease remission lasting &gt;18 months. Attempts to reduce or delay the onset of relapsed disease are underway and include identifying additional CAR T cell target antigens and methods of enhancing BCMA expression on MM cells. Engineering CAR T cells to enhance both the activity and safety of treatment continues to be a promising avenue for improvement. In this Review we summarize data from clinical trials that have been carried out to date, describe novel antigens that could be targeted in the future, and highlight potential future innovations that could enhance the efficacy and/or reduce the toxicities associated with CAR T cell therapies. </p>

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Inducible apoptosis as a safety switch for adoptive cell therapy.

          Cellular therapies could play a role in cancer treatment and regenerative medicine if it were possible to quickly eliminate the infused cells in case of adverse events. We devised an inducible T-cell safety switch that is based on the fusion of human caspase 9 to a modified human FK-binding protein, allowing conditional dimerization. When exposed to a synthetic dimerizing drug, the inducible caspase 9 (iCasp9) becomes activated and leads to the rapid death of cells expressing this construct. We tested the activity of our safety switch by introducing the gene into donor T cells given to enhance immune reconstitution in recipients of haploidentical stem-cell transplants. Patients received AP1903, an otherwise bioinert small-molecule dimerizing drug, if graft-versus-host disease (GVHD) developed. We measured the effects of AP1903 on GVHD and on the function and persistence of the cells containing the iCasp9 safety switch. Five patients between the ages of 3 and 17 years who had undergone stem-cell transplantation for relapsed acute leukemia were treated with the genetically modified T cells. The cells were detected in peripheral blood from all five patients and increased in number over time, despite their constitutive transgene expression. A single dose of dimerizing drug, given to four patients in whom GVHD developed, eliminated more than 90% of the modified T cells within 30 minutes after administration and ended the GVHD without recurrence. The iCasp9 cell-suicide system may increase the safety of cellular therapies and expand their clinical applications. (Funded by the National Heart, Lung, and Blood Institute and the National Cancer Institute; ClinicalTrials.gov number, NCT00710892.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NK cells for cancer immunotherapy

            Natural killer (NK) cells can swiftly kill multiple adjacent cells if these show surface markers associated with oncogenic transformation. This property, which is unique among immune cells, and their capacity to enhance antibody and T cell responses support a role for NK cells as anticancer agents. Although tumours may develop several mechanisms to resist attacks from endogenous NK cells, ex vivo activation, expansion and genetic modification of NK cells can greatly increase their antitumour activity and equip them to overcome resistance. Some of these methods have been translated into clinical-grade platforms and support clinical trials of NK cell infusions in patients with haematological malignancies or solid tumours, which have yielded encouraging results so far. The next generation of NK cell products will be engineered to enhance activating signals and proliferation, suppress inhibitory signals and promote their homing to tumours. These modifications promise to significantly increase their clinical activity. Finally, there is emerging evidence of increased NK cell-mediated tumour cell killing in the context of molecularly targeted therapies. These observations, in addition to the capacity of NK cells to magnify immune responses, suggest that NK cells are poised to become key components of multipronged therapeutic strategies for cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Principles of Engineering Immune Cells to Treat Cancer

              Chimeric antigen receptor (CAR) T cells have proven that engineered immune cells can serve as a powerful new class of cancer therapeutics. Clinical experience has helped to define the major challenges that must be met to make engineered T cells a reliable, safe, and effective platform that can be deployed against a broad range of tumors. The emergence of synthetic biology approaches for cellular engineering is providing us with a broadly expanded set of tools for programming immune cells. We discuss how these tools could be used to design the next generation of smart T cell precision therapeutics.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Nature Reviews Clinical Oncology
                Nat Rev Clin Oncol
                Springer Science and Business Media LLC
                1759-4774
                1759-4782
                September 25 2020
                Article
                10.1038/s41571-020-0427-6
                32978608
                67e50452-374a-46b1-84ca-36781773a581
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article