1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neoadjuvant Radiochemotherapy Alters the Immune and Metabolic Microenvironment in Oral Cancer—Analyses of CD68, CD163, TGF-β1, GLUT-1 and HIF-1α Expressions

      , , , , , , , ,
      Cells
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: The first-line treatment of oral squamous cell carcinoma (OSCC) involves surgical tumor resection, followed by adjuvant radio(chemo)therapy (R(C)T) in advanced cases. Neoadjuvant radio- and/or chemotherapy has failed to show improved survival in OSCC. Recently, neoadjuvant immunotherapy has shown promising therapeutic efficacy in phase 2 trials. In this context, the addition of radio- and chemotherapy is being reconsidered. Therefore, a better understanding of the tumor-biologic effects of neoadjuvant RCT would be beneficial. The current study was conducted on a retrospective cohort of patients who received neoadjuvant RCT for the treatment of oral cancer. The aim of the study was to evaluate the influence of neoadjuvant RCT on the immunological tumor microenvironment (TME) and hypoxic and glucose metabolisms. Methods: A cohort of 45 OSSC tissue samples from patients were analyzed before and after RCT (total 50.4 Gy; 1.8 Gy 5× weekly; Cisplatin + 5-Fluorouracil). Immunohistochemistry for CD68, CD163, TGF-β, GLUT-1 and HIF-1α was performed using tissue microarrays and automated cell counting. Differences in expression before and after RCT and associations with histomorphological parameters (T-status, N-status) were assessed using the Mann–Whitney U test. Results: Tumor resection specimens after neoadjuvant RCT showed a significant decrease in CD68 infiltration and a significant increase in CD163 cell density. The CD68/CD163 ratio was significantly lower after RCT, indicating a shift toward M2 polarization. The GLUT-1 and HIF-1α expressions were significantly lower after RCT. Larger tumors (T3/T4) showed a lower GLUT-1 expression. Other biomarkers were not associated with the T- and N-status. Conclusions: Neoadjuvant RCT with 50.4 Gy induced a shift toward the M2 polarization of macrophages in the TME. This change in immune composition is not favorable and may be prognostically negative and counteract immunotherapeutic approaches. In addition, the decreased expressions in GLUT-1 and HIF-1α indicate reductions in the glucose metabolism and hypoxic energy metabolism in response to “high dose” neoadjuvant RCT, which may be therapeutically desirable.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          QuPath: Open source software for digital pathology image analysis

          QuPath is new bioimage analysis software designed to meet the growing need for a user-friendly, extensible, open-source solution for digital pathology and whole slide image analysis. In addition to offering a comprehensive panel of tumor identification and high-throughput biomarker evaluation tools, QuPath provides researchers with powerful batch-processing and scripting functionality, and an extensible platform with which to develop and share new algorithms to analyze complex tissue images. Furthermore, QuPath’s flexible design makes it suitable for a wide range of additional image analysis applications across biomedical research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TGFβ Is a Master Regulator of Radiation Therapy-Induced Antitumor Immunity.

            T cells directed to endogenous tumor antigens are powerful mediators of tumor regression. Recent immunotherapy advances have identified effective interventions to unleash tumor-specific T-cell activity in patients who naturally develop them. Eliciting T-cell responses to a patient's individual tumor remains a major challenge. Radiation therapy can induce immune responses to model antigens expressed by tumors, but it remains unclear whether it can effectively prime T cells specific for endogenous antigens expressed by poorly immunogenic tumors. We hypothesized that TGFβ activity is a major obstacle hindering the ability of radiation to generate an in situ tumor vaccine. Here, we show that antibody-mediated TGFβ neutralization during radiation therapy effectively generates CD8(+) T-cell responses to multiple endogenous tumor antigens in poorly immunogenic mouse carcinomas. Generated T cells were effective at causing regression of irradiated tumors and nonirradiated lung metastases or synchronous tumors (abscopal effect). Gene signatures associated with IFNγ and immune-mediated rejection were detected in tumors treated with radiation therapy and TGFβ blockade in combination but not as single agents. Upregulation of programmed death (PD) ligand-1 and -2 in neoplastic and myeloid cells and PD-1 on intratumoral T cells limited tumor rejection, resulting in rapid recurrence. Addition of anti-PD-1 antibodies extended survival achieved with radiation and TGFβ blockade. Thus, TGFβ is a fundamental regulator of radiation therapy's ability to generate an in situ tumor vaccine. The combination of local radiation therapy with TGFβ neutralization offers a novel individualized strategy for vaccinating patients against their tumors.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Role of HIF in Immunity and Inflammation

                Bookmark

                Author and article information

                Contributors
                Journal
                CELLC6
                Cells
                Cells
                MDPI AG
                2073-4409
                March 2024
                February 25 2024
                : 13
                : 5
                : 397
                Article
                10.3390/cells13050397
                67e43b59-37e5-4565-a4a4-57abbfdc8e4a
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article