11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tetrahydrobiopterin Plays a Functionally Significant Role in Lipogenesis in the Oleaginous Fungus Mortierella alpina

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tetrahydrobiopterin (BH 4) is well-known as a cofactor of phenylalanine hydroxylase (PAH) and nitric oxide synthase (NOS), but its exact role in lipogenesis is unclear. In this study, the GTP cyclohydrolase I (GTPCH) gene was overexpressed to investigate the role of BH 4 in lipogenesis in oleaginous fungus Mortierella alpina. Transcriptome data analysis reveal that GTPCH expression was upregulated when nitrogen was exhausted, resulting in lipid accumulation. Significant changes were also found in the fatty acid profile of M. alpina grown on medium that contained a GTPCH inhibitor relative to that of M. alpina grown on medium that lacked the inhibitor. GTPCH overexpression in M. alpina (the MA-GTPCH strain) led to a sevenfold increase in BH 4 levels and enhanced cell fatty acid synthesis and poly-unsaturation. Increased levels of nicotinamide adenine dinucleotide phosphate (NADPH) and upregulated expression of NADPH-producing genes in response to enhanced BH 4 levels were also observed, which indicate a novel aspect of the NADPH regulatory mechanism. Increased BH 4 levels also enhanced phenylalanine hydroxylation and nitric oxide synthesis, and the addition of an NOS or a PAH inhibitor in the MA-GTPCH and control strain cultures decreased fatty acid accumulation, NADPH production, and the transcript levels of NADPH-producing genes. Our research suggests an important role of BH 4 in lipogenesis and that the phenylalanine catabolism and arginine–nitric oxide pathways play an integrating role in translating the effects of BH 4 on lipogenesis by regulating the cellular NADPH pool. Thus, our findings provide novel insights into the mechanisms of efficient lipid biosynthesis regulation in oleaginous microorganisms and lay a foundation for the genetic engineering of these organisms to optimize their dietary fat yield.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension.

          Endothelial dysfunction in the setting of cardiovascular risk factors such as hypercholesterolemia, diabetes mellitus, chronic smoking, as well hypertension, is, at least in part, dependent of the production of reactive oxygen species (ROS) and the subsequent decrease in vascular bioavailability of nitric oxide (NO). ROS-producing enzymes involved in increased oxidative stress within vascular tissue include NADPH oxidase, xanthine oxidase, and mitochondrial superoxide producing enzymes. Superoxide produced by the NADPH oxidase may react with NO, thereby stimulating the production of the NO/superoxide reaction product peroxynitrite. Peroxynitrite in turn has been shown to uncouple eNOS, therefore switching an antiatherosclerotic NO producing enzyme to an enzyme that may accelerate the atherosclerotic process by producing superoxide. Increased oxidative stress in the vasculature, however, is not restricted to the endothelium and also occurs within the smooth muscle cell layer. Increased superoxide production has important consequences with respect to signaling by the soluble guanylate cyclase and the cGMP-dependent kinase I, which activity and expression is regulated in a redox-sensitive fashion. The present review will summarize current concepts concerning eNOS uncoupling, with special focus on the role of tetrahydrobiopterin in mediating eNOS uncoupling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems.

            Malic enzyme (ME; NADP(+)-dependent; EC 1.1.40) provides NADPH for lipid biosynthesis in oleaginous microorganisms. Its role in vivo depends on there being an adequate supply of NADH to drive malate dehydrogenase to convert oxaloacetate to malate as a component of a cycle of three reactions: pyruvate → oxaloacetate → malate and, by the action of ME, back to pyruvate. However, the availability of cytosolic NADH is limited and, consequently, ancillary means of producing NADPH are necessary. Stoichiometries are given for the conversion of glucose to triacylglycerols involving ME with and without the reactions of the pentose phosphate pathway (PPP) as an additional source of NADPH. Some oleaginous microorganisms (such as Yarrowia lipolytica), however, lack a cytosolic ME and, if the PPP is the sole provider of NADPH, the theoretical yield of triacylglycerol from glucose falls to 27.6 % (w/w) from 31.6 % when ME is present. An alternative route for NADPH generation via a cytosolic isocitrate dehydrogenase (NADP(+)-dependent) is then discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation.

              Malic enzyme (ME; NADP(+)-dependent; EC 1 . 1 . 1 . 40) has been postulated to be the rate-limiting step for fatty acid biosynthesis in oleaginous fungi in which the extent of lipid accumulation is below the maximum possible. The genes encoding the isoform of ME involved in fatty acid synthesis were identified in Mucor circinelloides and Mortierella alpina, two commercially useful oil-producing fungi, using degenerate primers. Both showed high similarity with ME genes from other micro-organisms. The whole-length ME gene from each source was cloned into a leucine auxotroph of Mc. circinelloides and placed under the control of the constitutive glyceraldehyde-3-phosphate dehydrogenase gene (gpd1) promoter. After confirming correct expression of the ME genes, the two recombinant strains were grown in fully controlled, submerged-culture bioreactors using a high C : N ratio medium for lipid accumulation. Activities of ME were increased by two- to threefold and the lipid contents of the cells, in both recombinants, were increased from 12 % of the biomass to 30 %. Simultaneously, the degree of fatty acid desaturation increased slightly. Thus, increased expression of the ME gene leads to both increased biosynthesis of fatty acids and formation of unsaturated fatty acids, including gamma-linolenic acid (18 : 3 n-6). At the end of lipid accumulation (96 h), ME activity in the recombinant strains had ceased, as it had done in the parent wild-type cells, indicating that additional, but unknown, controls over its activity must be in place to account for this loss of activity: this may be due to the presence of a specific ME-cleaving enzyme. The hypothesis that the rate-limiting step of fatty acid biosynthesis is therefore the supply of NADPH, as generated specifically and solely by ME, is therefore considerably strengthened by these results.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                20 February 2020
                2020
                : 11
                : 250
                Affiliations
                [1] 1State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi, China
                [2] 2School of Food Science and Technology, Jiangnan University , Wuxi, China
                [3] 3National Engineering Research Center for Functional Food, Jiangnan University , Wuxi, China
                Author notes

                Edited by: Raffaella Balestrini, Institute for Sustainable Plant Protection (CNR), Italy

                Reviewed by: Gennaro Agrimi, University of Bari Aldo Moro, Italy; William Doerrler, Louisiana State University, United States

                *Correspondence: Wei Chen, chenwei66@ 123456jiangnan.edu.cn

                These authors have contributed equally to this work

                This article was submitted to Fungi and Their Interactions, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2020.00250
                7044132
                32153536
                67cf70da-342b-42ca-b122-16e5f644b166
                Copyright © 2020 Wang, Zhang, Chen, Gu, Zhao, Zhang, Chen and Chen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 November 2019
                : 03 February 2020
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 54, Pages: 11, Words: 0
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                mortierella alpine,tetrahydrobiopterin,gtp cyclohydrolase i,nadph,lipogenesis

                Comments

                Comment on this article