1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Red Blood Cell-Hitchhiking Delivery of Simvastatin to Relieve Acute Respiratory Distress Syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          The purpose of this study is to address the high mortality and poor prognosis associated with Acute Respiratory Distress Syndrome (ARDS), conditions characterized by acute and progressive respiratory failure. The primary goal was to prolong drug circulation time, increase drug accumulation in the lungs, and minimize drug-related side effects.

          Methods

          Simvastatin (SIM) was used as the model drug in this study. Employing a red blood cell surface-loaded nanoparticle drug delivery technique, pH-responsive cationic nanoparticles loaded with SIM were non-covalently adsorbed onto the surface of red blood cells (RBC), creating a novel drug delivery system (RBC@SIM-PEI-PPNPs).

          Results

          The RBC@SIM-PEI-PPNPs delivery system effectively extended the drug’s circulation time, providing an extended therapeutic window. Additionally, this method substantially improved the targeted accumulation of SIM in lung tissues, thereby enhancing the drug’s efficacy in treating ARDS and impeding its progression to ARDS. Crucially, the system showed a reduced risk of adverse drug reactions.

          Conclusion

          RBC@SIM-PEI-PPNPs demonstrates promise in ARDS and ARDS treatment. This innovative approach successfully overcomes the limitations associated with SIM’s poor solubility and low bioavailability, resulting in improved therapeutic outcomes and fewer drug-related side effects. This research holds significant clinical implications and highlights its potential for broader application in drug delivery and lung disease treatment.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries.

          Limited information exists about the epidemiology, recognition, management, and outcomes of patients with the acute respiratory distress syndrome (ARDS).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acute respiratory distress syndrome

            The acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure in critically ill patients and is defined by the acute onset of noncardiogenic pulmonary oedema, hypoxaemia and the need for mechanical ventilation. ARDS occurs most often in the setting of pneumonia, sepsis, aspiration of gastric contents or severe trauma and is present in ~10% of all patients in intensive care units worldwide. Despite some improvements, mortality remains high at 30–40% in most studies. Pathological specimens from patients with ARDS frequently reveal diffuse alveolar damage, and laboratory studies have demonstrated both alveolar epithelial and lung endothelial injury, resulting in accumulation of protein-rich inflammatory oedematous fluid in the alveolar space. Diagnosis is based on consensus syndromic criteria, with modifications for under-resourced settings and in paediatric patients. Treatment focuses on lung-protective ventilation; no specific pharmacotherapies have been identified. Long-term outcomes of patients with ARDS are increasingly recognized as important research targets, as many patients survive ARDS only to have ongoing functional and/or psychological sequelae. Future directions include efforts to facilitate earlier recognition of ARDS, identifying responsive subsets of patients and ongoing efforts to understand fundamental mechanisms of lung injury to design specific treatments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell Membrane Coating Nanotechnology

              Nanoparticle-based therapeutic, prevention, and detection modalities have the potential to greatly impact how diseases are diagnosed and managed in the clinic. With the wide range of different nanomaterials available to nanomedicine researchers, the rational design of nanocarriers on an application-specific basis has become increasingly commonplace. In this review, we provide a comprehensive overview on an emerging platform: cell membrane coating nanotechnology. As one of the most fundamental units in biology, a cell carries out a wide range of functions, including its remarkable ability to interface and interact with its surrounding environment. Instead of attempting to replicate such functions via synthetic techniques, researchers are now directly leveraging naturally derived cell membranes as a means of bestowing nanoparticles with enhanced biointerfacing capabilities. This top-down technique is facile, highly generalizable, and has the potential to greatly augment the potency and safety of existing nanocarriers. Further, the introduction of a natural membrane substrate onto the surface of a nanoparticle has enabled additional applications beyond those already associated with the field of nanomedicine. Despite the relative youth of the cell membrane coating technique, there exists an impressive body of literature on the topic, which will be covered in detail in this review. Overall, there is still significant room for development, as researchers continue to refine existing workflows while finding new and exciting applications that can take advantage of this emerging technology. Cell membrane coating is an emerging nanotechnology. By cloaking nanomaterials in a layer of natural cell membrane, which can be derived from a variety of cell types, it is possible to fabricate nanoplatforms with enhanced surface functionality. This can lead to increased nanoparticle performance in complex biological environments, which can benefit applications like drug delivery, imaging, phototherapies, immunotherapies, and detoxification.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                ijn
                International Journal of Nanomedicine
                Dove
                1176-9114
                1178-2013
                06 June 2024
                2024
                : 19
                : 5317-5333
                Affiliations
                [1 ]Department of Pharmaceutics, China Pharmaceutical University , Nanjing, People’s Republic of China
                [2 ]School of Pharmacy, Nantong University , Nantong, People’s Republic of China
                [3 ]Pediatric Intensive Care Unit, Children’s Hospital of Nanjing Medical University , Nanjing, People’s Republic of China
                Author notes
                Correspondence: Chunli Zheng; Yanlong Bi, Email zhengchunli@cpu.edu.cn; pulong123@163.com
                [*]

                These authors contributed equally to this work

                Article
                460890
                10.2147/IJN.S460890
                11164090
                38859953
                6718f573-6146-4363-895e-932f1728cb82
                © 2024 Sun et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 22 January 2024
                : 22 May 2024
                Page count
                Figures: 6, Tables: 1, References: 40, Pages: 17
                Categories
                Original Research

                Molecular medicine
                acute lung injury,simvastatin,respiratory distress syndrome,ph response
                Molecular medicine
                acute lung injury, simvastatin, respiratory distress syndrome, ph response

                Comments

                Comment on this article