Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Osmotic Tolerance of Equine Spermatozoa and the Effects of Soluble Cryoprotectants on Equine Sperm Motility, Viability, and Mitochondrial Membrane Potential

      ,
      Journal of Andrology
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function

          PF Watson (1995)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea.

            A new member of the aquaporin (AQP) family has been identified from rat testis. This gene, referred as aquaporin 7 (AQP7), encodes a 269-amino acid protein that contained the conserved NPA motifs of MIP family proteins. AQP7 has the amino acid sequence homology with other aquaporins ( approximately 30%), and it is highest with AQP3 (48%), suggesting that both AQP3 and AQP7 belong to a subfamily in the MIP family. Injection of AQP7-cRNA into Xenopus oocytes expressed a 26-kDa protein detected by immunoblotting. The expression of AQP7 in oocytes stimulated the osmotic water permeability by 10-fold which was not inhibited by 0.3 mM mercury chloride. The Arrhenius activation energy for the stimulated water permeability was low (2.1 kcal/mol). AQP7 also facilitated glycerol and urea transport by 5- and 9-fold, respectively. The activation energy for glycerol was also low (5.3 kcal/mol after the correction of the endogenous glycerol permeability of oocytes). Northern blot analysis revealed a 1.5-kilobase pair transcript expressed abundantly in testis. In situ hybridization of testis revealed the expression of AQP7 at late spermatids in seminiferous tubules. The immunohistochemistry of testis localized the AQP7 expression at late spermatids and at maturing sperms. AQP7 may play an important role in sperm function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of intracellular ice formation.

              The phenomenon of intracellular freezing in cells was investigated by designing experiments with cultured mouse fibroblasts on a cryomicroscope to critically assess the current hypotheses describing the genesis of intracellular ice: (a) intracellular freezing is a result of critical undercooling; (b) the cytoplasm is nucleated through aqueous pores in the plasma membrane; and (c) intracellular freezing is a result of membrane damage caused by electrical transients at the ice interface. The experimental data did not support any of these theories, but was consistent with the hypothesis that the plasma membrane is damaged at a critical gradient in osmotic pressure across the membrane, and intracellular freezing occurs as a result of this damage. An implication of this hypothesis is that mathematical models can be used to design protocols to avoid damaging gradients in osmotic pressure, allowing new approaches to the preservation of cells, tissues, and organs by rapid cooling.
                Bookmark

                Author and article information

                Journal
                Journal of Andrology
                Wiley
                01963635
                November 12 2001
                November 12 2001
                January 02 2013
                : 22
                : 6
                : 1061-1069
                Article
                10.1002/j.1939-4640.2001.tb03446.x
                670b2cf5-da5a-41fe-8e8e-dd9bbb572f71
                © 2013

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content3,689

                Cited by11

                Most referenced authors244