16
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Berberine-Loaded Thiolated Pluronic F127 Polymeric Micelles for Improving Skin Permeation and Retention

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Challenges associated with local antibacterial and anti-inflammatory drugs include low penetration and retention of drugs at the expected action site. Additionally, improving these challenges allows for the prevention of side effects that are caused by drug absorption into the systemic circulation and helps to safely treat local skin diseases.

          Methods

          In the current study, we successfully prepared a thiolated pluronic F127 polymer micelles (BTFM), which binds to keratin through a disulphide bond, to produce skin retention. In addition, the small particle size of polymer micelles promotes the penetration of carriers into the skin. The current study was divided into two experiments: an in vitro experiment; an in vivo experiment that involved the penetration of the micelle-loaded drugs into the skin of rats, the skin irritation test and the anti-inflammatory activity of the drug-loaded micelles on dimethyl benzene-induced ear edema in mice.

          Results

          Results from our in vitro transdermal experiment revealed that the amount of drug absorbed through the skin was decreased after the drug was loaded in the BTFM. Further, results from the vivo study, which used fluorescence microscopy to identify the location of the BTFM after penetration, revealed that there was strong fluorescence in the epidermis layer, but there was no strong fluorescence in the deep skin layer. In addition, the BTFM had a very good safety profile with no potentially hazardous skin irritation and transdermal administration of BTFM could significantly suppress ear edema induced by dimethyl benzene. Therefore, these findings indicated that BTFM reduced the amount of drug that entered the systemic circulation. Our results also demonstrated that the BTFM had a certain affinity for keratin.

          Conclusion

          Our experimental results suggest that the BTFM may be an effective drug carrier for local skin therapy with good safety profile.

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Advanced materials and processing for drug delivery: the past and the future.

          Design and synthesis of efficient drug delivery systems are of vital importance for medicine and healthcare. Materials innovation and nanotechnology have synergistically fueled the advancement of drug delivery. Innovation in material chemistry allows the generation of biodegradable, biocompatible, environment-responsive, and targeted delivery systems. Nanotechnology enables control over size, shape and multi-functionality of particulate drug delivery systems. In this review, we focus on the materials innovation and processing of drug delivery systems and how these advances have shaped the past and may influence the future of drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Natural Berberine-Based Chinese Herb Medicine Assembled Nanostructures with Modified Antibacterial Application

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Advances in mucoadhesion and mucoadhesive polymers.

              Mucoadhesion is the ability of materials to adhere to mucosal membranes in the human body and provide a temporary retention. This property has been widely used to develop polymeric dosage forms for buccal, oral, nasal, ocular and vaginal drug delivery. Excellent mucoadhesive properties are typical for hydrophilic polymers possessing charged groups and/or non-ionic functional groups capable of forming hydrogen bonds with mucosal surfaces. This feature article considers recent advances in the study of mucoadhesion and mucoadhesive polymers. It provides an overview on the structure of mucosal membranes, properties of mucus gels and the nature of mucoadhesion. It describes the most common methods to evaluate mucoadhesive properties of various dosage forms and discusses the main classes of mucoadhesives. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                ijn
                intjnano
                International Journal of Nanomedicine
                Dove
                1176-9114
                1178-2013
                08 December 2020
                2020
                : 15
                : 9987-10005
                Affiliations
                [1 ]College of Food and Drug, Luoyang Normal University , Luoyang 471934, People’s Republic of China
                [2 ]Department of Pharmacy, Henan Medical College , Zhengzhou 451191, People’s Republic of China
                Author notes
                Correspondence: Liye Wang; Zigui Tang Email liye2009314@163.com; 453869820@qq.com
                [*]

                These authors contributed equally to this work

                Article
                270336
                10.2147/IJN.S270336
                7733396
                33324058
                670a6dbf-613e-44a2-81cc-56a49b65da6f
                © 2020 Niu et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 09 July 2020
                : 06 November 2020
                Page count
                Figures: 13, Tables: 6, References: 68, Pages: 19
                Categories
                Original Research

                Molecular medicine
                f127 polymeric micelles,berberine,cysteine,skin permeation and retention
                Molecular medicine
                f127 polymeric micelles, berberine, cysteine, skin permeation and retention

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content20

                Cited by17

                Most referenced authors611