2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical and Genomic Characteristics of Patients with Hormone Receptor–Positive, Human Epidermal Growth Factor Receptor 2–Negative Metastatic Breast Cancer Following Progression on Cyclin-Dependent Kinase 4 and 6 Inhibitors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose:

          We explored the clinical and genomic characteristics of hormone receptor–positive (HR+), HER2-negative (HER2−) metastatic breast cancer (MBC) after progression on cyclin-dependent kinase 4 and 6 inhibitors (CDK4 and 6i) ± endocrine therapy (ET) to understand potential resistance mechanisms that may aid in identifying treatment options.

          Experimental Design:

          Patients in the United States with HR+, HER2− MBC had tumor biopsies collected from a metastatic site during routine care following progression on a CDK4 and 6i ± ET (CohortPost) or prior to initiating CDK4 and 6i treatment (CohortPre) and analyzed using a targeted mutation panel and RNA-sequencing. Clinical and genomic characteristics were described.

          Results:

          The mean age at MBC diagnosis was 59 years in CohortPre ( n = 133) and 56 years in CohortPost ( n = 223); 14% and 45% of patients had prior chemotherapy/ET, and 35% and 26% had de novo stage IV MBC, respectively. The most common biopsy site was liver (CohortPre, 23%; CohortPost, 56%). CohortPost had significantly higher tumor mutational burden (TMB; median 3.16 vs. 1.67 Mut/Mb, P < 0.0001), ESR1 alteration frequency (mutations: 37% vs. 10%, FDR < 0.0001; fusions: 9% vs. 2%, P = 0.0176), and higher copy-number amplification of genes on chr12q15, including MDM2, FRS2, and YEATS4 versus patients in the CohortPre group. In addition, CDK4 copy-number gain on chr12q13 was significantly higher in CohortPost versus CohortPre (27% vs. 11%, P = 0.0005).

          Conclusions:

          Distinct mechanisms potentially associated with resistance to CDK4 and 6i ± ET, including alterations in ESR1 and amplification of chr12q15 and CDK4 copy-number gain, were identified.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.

            The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden

              Background High tumor mutational burden (TMB) is an emerging biomarker of sensitivity to immune checkpoint inhibitors and has been shown to be more significantly associated with response to PD-1 and PD-L1 blockade immunotherapy than PD-1 or PD-L1 expression, as measured by immunohistochemistry (IHC). The distribution of TMB and the subset of patients with high TMB has not been well characterized in the majority of cancer types. Methods In this study, we compare TMB measured by a targeted comprehensive genomic profiling (CGP) assay to TMB measured by exome sequencing and simulate the expected variance in TMB when sequencing less than the whole exome. We then describe the distribution of TMB across a diverse cohort of 100,000 cancer cases and test for association between somatic alterations and TMB in over 100 tumor types. Results We demonstrate that measurements of TMB from comprehensive genomic profiling are strongly reflective of measurements from whole exome sequencing and model that below 0.5 Mb the variance in measurement increases significantly. We find that a subset of patients exhibits high TMB across almost all types of cancer, including many rare tumor types, and characterize the relationship between high TMB and microsatellite instability status. We find that TMB increases significantly with age, showing a 2.4-fold difference between age 10 and age 90 years. Finally, we investigate the molecular basis of TMB and identify genes and mutations associated with TMB level. We identify a cluster of somatic mutations in the promoter of the gene PMS2, which occur in 10% of skin cancers and are highly associated with increased TMB. Conclusions These results show that a CGP assay targeting ~1.1 Mb of coding genome can accurately assess TMB compared with sequencing the whole exome. Using this method, we find that many disease types have a substantial portion of patients with high TMB who might benefit from immunotherapy. Finally, we identify novel, recurrent promoter mutations in PMS2, which may be another example of regulatory mutations contributing to tumorigenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0424-2) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Journal
                Clin Cancer Res
                Clin Cancer Res
                Clinical Cancer Research
                American Association for Cancer Research
                1078-0432
                1557-3265
                01 September 2023
                08 June 2023
                : 29
                : 17
                : 3372-3383
                Affiliations
                [1 ]Eli Lilly and Company, Indianapolis, Indiana.
                [2 ]Université Paris Sud, Orsay, France.
                [3 ]Inserm, Gustave Roussy Cancer Campus, UMR981, Villejuif, France.
                [4 ]Department of Medical Oncology, Gustave Roussy, Villejuif, France.
                Author notes
                [* ] Corresponding Author: Fabrice Andre, Research, Institut Gustave Roussy, Villejuif, France. E-mail: FABRICE.ANDRE@ 123456gustaveroussy.fr

                Clin Cancer Res 2023;29:3372–83

                Author information
                https://orcid.org/0000-0002-8194-9052
                https://orcid.org/0000-0003-2246-0916
                https://orcid.org/0000-0002-7331-2625
                https://orcid.org/0000-0003-0583-0882
                https://orcid.org/0000-0002-9344-2320
                https://orcid.org/0009-0004-5232-9585
                https://orcid.org/0009-0001-3527-7224
                https://orcid.org/0000-0002-0919-787X
                https://orcid.org/0000-0003-4800-4046
                https://orcid.org/0000-0001-5795-8357
                Article
                CCR-22-3843
                10.1158/1078-0432.CCR-22-3843
                10472108
                37289194
                66ffc016-9592-4d5f-a717-6bcbafbb568f
                ©2023 The Authors; Published by the American Association for Cancer Research

                This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.

                History
                : 14 December 2022
                : 14 March 2023
                : 06 June 2023
                Page count
                Pages: 12
                Funding
                Funded by: Eli Lilly and Company (Lilly), https://doi.org/10.13039/100004312;
                Award ID: N/A
                Award Recipient :
                Categories
                Precision Medicine and Imaging

                Comments

                Comment on this article