15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Review of rehabilitation protocols for brachial plexus injury

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brachial plexus injury (BPI) is one of the most serious peripheral nerve injuries, resulting in severe and persistent impairments of the upper limb and disability in adults and children alike. With the relatively mature early diagnosis and surgical technique of brachial plexus injury, the demand for rehabilitation treatment after brachial plexus injury is gradually increasing. Rehabilitation intervention can be beneficial to some extent during all stages of recovery, including the spontaneous recovery period, the postoperative period, and the sequelae period. However, due to the complex composition of the brachial plexus, location of injury, and the different causes, the treatment varies. A clear rehabilitation process has not been developed yet. Rehabilitation therapy that has been widely studied focusing on exercise therapy, sensory training, neuroelectromagnetic stimulation, neurotrophic factors, acupuncture and massage therapy, etc., while interventions like hydrotherapy, phototherapy, and neural stem cell therapy are less studied. In addition, rehabilitation methods in some special condition and group often neglected, such as postoperative edema, pain, and neonates. The purpose of this article is to explore the potential contributions of various methods to brachial plexus injury rehabilitation and to provide a concise overview of the interventions that have been shown to be beneficial. The key contribution of this article is to form relatively clear rehabilitation processes based on different periods and populations, which provides an important reference for the treatment of brachial plexus injuries.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Synaesthesia in phantom limbs induced with mirrors.

          Although there is a vast clinical literature on phantom limbs, there have been no experimental studies on the effects of visual input on phantom sensations. We introduce an inexpensive new device--a 'virtual reality box'--to resurrect the phantom visually to study inter-sensory effects. A mirror is placed vertically on the table so that the mirror reflection of the patient's intact had is 'superimposed' on the felt position of the phantom. We used this procedure on ten patients and found the following results. 1. In six patients, when the normal hand was moved, so that the phantom was perceived to move in the mirror, it was also felt to move; i.e. kinesthetic sensations emerged in the phantom. In D.S. this effect occurred even though he had never experienced any movements in the phantom for ten years before we tested him. He found the return of sensations very enjoyable. 2. Repeated practice led to a permanent 'disappearance' of the phantom arm in patient D.S. and the hand became telescoped into the stump near the shoulder. 3. Using an optical trick, impossible postures--e.g. extreme hyperextension of the fingers--could be induced visually in the phantom. In one case this was felt as a transient 'painful tug' in the phantom. 4. Five patients experienced involuntary painful 'clenching spasms' in the phantom hand and in four of them the spasms were relieved when the mirror was used to facilitate 'opening' of the phantom hand; opening was not possible without the mirror. 5. In three patients, touching the normal hand evoked precisely localized touch sensations in the phantom. Interestingly, the referral was especially pronounced when the patients actually 'saw' their phantom being touched in the mirror. Indeed, in a fourth patient (R.L.) the referral occurred only if he saw his phantom being touched: a curious form of synaesthesia. These experiments lend themselves readily to imaging studies using PET and fMRI. Taken collectively, they suggest that there is a considerable amount of latent plasticity even in the adult human brain. For example, precisely organized new pathways, bridging the two cerebral hemispheres, can emerge in less than three weeks. Furthermore, there must be a great deal of back and forth interaction between vision and touch, so that the strictly modular, hierarchical model of the brain that is currently in vogue needs to be replaced with a more dynamic, interactive model, in which 're-entrant' signalling plays the main role.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Epidemiology, etiology, and types of severe adult brachial plexus injuries requiring surgical repair: systematic review and meta-analysis

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accelerating axon growth to overcome limitations in functional recovery after peripheral nerve injury.

              Injured peripheral nerves regenerate at very slow rates. Therefore, proximal injury sites such as the brachial plexus still present major challenges, and the outcomes of conventional treatments remain poor. This is in part attributable to a progressive decline in the Schwann cells' ability to provide a supportive milieu for the growth cone to extend and to find the appropriate target. These challenges are compounded by the often considerable delay of regeneration across the site of nerve laceration. Recently, low-frequency electrical stimulation (as brief as an hour) has shown promise, as it significantly accelerated regeneration in animal models through speeding of axon growth across the injury site. To test whether this might be a useful clinical tool, we carried out a randomized controlled trial in patients who had experienced substantial axonal loss in the median nerve owing to severe compression in the carpal tunnel. To further elucidate the potential mechanisms, we applied rolipram, a cyclic adenosine monophosphate agonist, to rats after axotomy of the femoral nerve. We demonstrated that effects similar to those observed in animal studies could also be attained in humans. The mechanisms of action of electrical stimulation likely operate through up-regulation of neurotrophic factors and cyclic adenosine monophosphate. Indeed, the application of rolipram significantly accelerated nerve regeneration. With new mechanistic insights into the influencing factors of peripheral nerve regeneration, the novel treatments described above could form part of an armament of synergistic therapies that could make a meaningful difference to patients with peripheral nerve injuries.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                17 April 2023
                2023
                : 14
                : 1084223
                Affiliations
                Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, China
                Author notes

                Edited by: Shizhang Ling, The First Affiliated Hospital of Wannan Medical College, China

                Reviewed by: Emmanuel Estrella, University of the Philippines Manila, Philippines; Jie Ma, Shanghai University of Traditional Chinese Medicine, China

                *Correspondence: Zuobing Chen, czb1971@ 123456zju.edu.cn

                These authors have contributed equally to this work and share first authorship

                This article was submitted to Neuromuscular Disorders and Peripheral Neuropathies, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2023.1084223
                10150106
                37139070
                66e47413-5bd3-48f7-ae94-d3bac18497c4
                Copyright © 2023 Li, Chen, Wang, Zhang and Chen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 October 2022
                : 13 March 2023
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 56, Pages: 12, Words: 8682
                Categories
                Neurology
                Review

                Neurology
                brachial plexus injury,rehabilitation,neuropathic pain,neonatal brachial plexus injury,treatment

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content987

                Cited by11

                Most referenced authors489