18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Two Small Spatially Distinct Regions of Phytochrome B Are Required for Efficient Signaling Rates.

      1 , ,
      The Plant cell
      American Society of Plant Biologists (ASPB)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We used a series of in vitro-generated deletion and amino acid substitution derivatives of phytochrome B (phyB) expressed in transgenic Arabidopsis to identify regions of the molecule important for biological activity. Expression of the chromophore-bearing N-terminal domain of phyB alone resulted in a fully photoactive, monomeric molecule lacking normal regulatory activity. Expression of the C-terminal domain alone resulted in a photoinactive, dimeric molecule, also lacking normal activity. Thus, both domains are necessary, but neither is sufficient for phyB activity. Deletion of a small region on each major domain (residues 6 to 57 and 652 to 712, respectively) was shown to compromise phyB activity differentially without interfering with spectral activity or dimerization. Deletion of residues 6 to 57 caused a large increase in the fluence rate of continuous red light (Rc) required for maximal seedling responsiveness, indicating a marked decrease in efficiency of light signal perception or processing per mole of mutant phyB. In contrast, deletion of residues 652 to 712 resulted in a photoreceptor that retained saturation of seedling responsiveness to Rc at low fluence rates but at a response level much below the maximal response elicited by the parent molecule. This deletion apparently reduces the maximal biological activity per mole of phyB without a major decrease in efficiency of signal perception, thus suggesting disruption of a process downstream of signal perception. In addition, certain phyB constructs caused dominant negative interference with endogenous phyA activity in continuous far-red light, suggesting that the two photoreceptors may share reaction partners.

          Related collections

          Author and article information

          Journal
          Plant Cell
          The Plant cell
          American Society of Plant Biologists (ASPB)
          1532-298X
          1040-4651
          May 1996
          : 8
          : 5
          Affiliations
          [1 ] Department of Plant Biology, University of California-Berkeley, Berkeley, California 94720.
          Article
          8/5/859
          10.1105/tpc.8.5.859
          161144
          12239404
          66d757ea-a974-411d-84a5-38e8757f9e68
          History

          Comments

          Comment on this article