12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Transcripts for possible capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent Capsicum spp

      , , , , ,
      Plant Science
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          A knowledge base for predicting protein localization sites in eukaryotic cells

          To automate examination of massive amounts of sequence data for biological function, it is important to computerize interpretation based on empirical knowledge of sequence-function relationships. For this purpose, we have been constructing a knowledge base by organizing various experimental and computational observations as a collection of if—then rules. Here we report an expert system, which utilizes this knowledge base, for predicting localization sites of proteins only from the information on the amino acid sequence and the source origin. We collected data for 401 eukaryotic proteins with known localization sites (subcellular and extracellular) and divided them into training data and testing data. Fourteen localization sites were distinguished for animal cells and 17 for plant cells. When sorting signals were not well characterized experimentally, various sequence features were computationally derived from the training data. It was found that 66% of the training data and 59% of the testing data were correctly predicted by our expert system. This artificial intelligence approach is powerful and flexible enough to be used in genome analyses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MOLECULAR-GENETIC ANALYSIS OF PLANT CYTOCHROME P450-DEPENDENT MONOOXYGENASES.

            Cytochrome P450-dependent monooxygenases are a large group of heme-containing enzymes, most of which catalyze NADPH- and O2-dependent hydroxylation reactions. The cloning of plant P450s has been hampered because these membrane-localized proteins are typically present in low abundance and are often unstable to purification. Since the cloning of the first plant P450 gene in 1990, there has been an explosion in the rate at which genes encoding plant P450s have been identified. These successes have largely been the result of advances in purification techniques, as well as the application of alternative methods such as mutant- and PCR-based cloning strategies. The availability of these cloned genes has made possible the analysis of P450 gene regulation and may soon reveal aspects of the evolution of P450s in plants. This new knowledge will significantly improve our understanding of many metabolic pathways and may permit their manipulation in the near future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cinnamate-4-hydroxylase expression in Arabidopsis. Regulation in response to development and the environment.

              Cinnamate-4-hydroxylase (C4H) is the first Cyt P450-dependent monooxygenase of the phenylpropanoid pathway. To study the expression of this gene in Arabidopsis thaliana, a C4H cDNA clone from the Arabidopsis expressed sequence tag database was identified and used to isolate its corresponding genomic clone. The entire C4H coding sequence plus 2.9 kb of its promoter were isolated on a 5.4-kb HindIII fragment of this cosmid. Inspection of the promoter sequence revealed the presence of a number of putative regulatory motifs previously identified in the promoters of other phenylpropanoid pathway genes. The expression of C4H was analyzed by RNA blot hybridization analysis and in transgenic Arabidopsis carrying a C4H-beta-glucuronidase transcriptional fusion. C4H message accumulation was light-dependent, but was detectable even in dark-grown seedlings. Consistent with these data, C4H mRNA was accumulated to light-grown levels in etiolated det1-1 mutant seedlings. C4H is widely expressed in various Arabidopsis tissues, particularly in roots and cells undergoing lignification. The C4H-driven beta-glucuronidase expression accurately reflected the tissue-specificity and wound-inducibility of the C4H promoter indicated by RNA blot hybridization analysis. A modest increase in C4H expression was observed in the tt8 mutant of Arabidopsis.
                Bookmark

                Author and article information

                Journal
                Plant Science
                Plant Science
                Elsevier BV
                01689452
                October 1999
                October 1999
                : 148
                : 1
                : 47-57
                Article
                10.1016/S0168-9452(99)00118-1
                66d37ce1-3262-4c1a-b937-2684d73bf4b9
                © 1999

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article