72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Degeneration and regeneration of the intervertebral disc: lessons from development

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Degeneration of the intervertebral discs, a process characterized by a cascade of cellular, biochemical, structural and functional changes, is strongly implicated as a cause of low back pain. Current treatment strategies for disc degeneration typically address the symptoms of low back pain without treating the underlying cause or restoring mechanical function. A more in-depth understanding of disc degeneration, as well as opportunities for therapeutic intervention, can be obtained by considering aspects of intervertebral disc development. Development of the intervertebral disc involves the coalescence of several different cell types through highly orchestrated and complex molecular interactions. The resulting structures must function synergistically in an environment that is subjected to continuous mechanical perturbation throughout the life of an individual. Early postnatal changes, including altered cellularity, vascular regression and altered extracellular matrix composition, might set the disc on a slow course towards symptomatic degeneration. In this Perspective, we review the pathogenesis and treatment of intervertebral disc degeneration in the context of disc development. Within this scope, we examine how model systems have advanced our understanding of embryonic morphogenesis and associated molecular signaling pathways, in addition to the postnatal changes to the cellular, nutritional and mechanical microenvironment. We also discuss the current status of biological therapeutic strategies that promote disc regeneration and repair, and how lessons from development might provide clues for their refinement.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          What is intervertebral disc degeneration, and what causes it?

          Review and reinterpretation of existing literature. To suggest how intervertebral disc degeneration might be distinguished from the physiologic processes of growth, aging, healing, and adaptive remodeling. The research literature concerning disc degeneration is particularly diverse, and there are no accepted definitions to guide biomedical research, or medicolegal practice. The process of disc degeneration is an aberrant, cell-mediated response to progressive structural failure. A degenerate disc is one with structural failure combined with accelerated or advanced signs of aging. Early degenerative changes should refer to accelerated age-related changes in a structurally intact disc. Degenerative disc disease should be applied to a degenerate disc that is also painful. Structural defects such as endplate fracture, radial fissures, and herniation are easily detected, unambiguous markers of impaired disc function. They are not inevitable with age and are more closely related to pain than any other feature of aging discs. Structural failure is irreversible because adult discs have limited healing potential. It also progresses by physical and biologic mechanisms, and, therefore, is a suitable marker for a degenerative process. Biologic progression occurs because structural failure uncouples the local mechanical environment of disc cells from the overall loading of the disc, so that disc cell responses can be inappropriate or "aberrant." Animal models confirm that cell-mediated changes always follow structural failure caused by trauma. This definition of disc degeneration simplifies the issue of causality: excessive mechanical loading disrupts a disc's structure and precipitates a cascade of cell-mediated responses, leading to further disruption. Underlying causes of disc degeneration include genetic inheritance, age, inadequate metabolite transport, and loading history, all of which can weaken discs to such an extent that structural failure occurs during the activities of daily living. The other closely related definitions help to distinguish between degenerate and injured discs, and between discs that are and are not painful.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Degeneration of the intervertebral disc

            The intervertebral disc is a cartilaginous structure that resembles articular cartilage in its biochemistry, but morphologically it is clearly different. It shows degenerative and ageing changes earlier than does any other connective tissue in the body. It is believed to be important clinically because there is an association of disc degeneration with back pain. Current treatments are predominantly conservative or, less commonly, surgical; in many cases there is no clear diagnosis and therapy is considered inadequate. New developments, such as genetic and biological approaches, may allow better diagnosis and treatments in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nutrition of the intervertebral disc.

              A review of the literature on disc nutrition. To summarize the information on disc nutrition in relation to disc degeneration. The disc is avascular, and the disc cells depend on diffusion from blood vessels at the disc's margins to supply the nutrients essential for cellular activity and viability and to remove metabolic wastes such as lactic acid. The nutrient supply can fail due to changes in blood supply, sclerosis of the subchondral bone or endplate calcification, all of which can block transport from blood supply to the disc or due to changes in cellular demand. A review of the studies on disc blood supply, solute transport, studies of solute transport in animal and human disc in vitro, and of theoretical modeling studies that have examined factors affecting disc nutrition. Small nutrients such as oxygen and glucose are supplied to the disc's cells virtually entirely by diffusion; convective transport, arising from load-induced fluid movement in and out of the disc, has virtually no direct influence on transport of these nutrients. Consequently, there are steep concentration gradients of oxygen, glucose, and lactic acid across the disc; oxygen and glucose concentrations are lowest in the center of the nucleus where lactic acid concentrations are greatest. The actual levels of concentration depend on the balance between diffusive transport and cellular demand and can fall to critical levels if the endplate calcifies or nutritional demand increases. Loss of nutrient supply can lead to cell death, loss of matrix production, and increase in matrix degradation and hence to disc degeneration.
                Bookmark

                Author and article information

                Journal
                Dis Model Mech
                dmm
                DMM
                Disease Models & Mechanisms
                The Company of Biologists Limited
                1754-8403
                1754-8411
                January 2011
                1 December 2010
                : 4
                : 1
                : 31-41
                Affiliations
                [1 ]Department of Orthopaedic Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
                [2 ]Department of Molecular Genetics and Microbiology, The Genetics Institute, University of Florida, Gainesville, FL 32610, USA
                Author notes
                Article
                0040031
                10.1242/dmm.006403
                3008962
                21123625
                66395de7-015b-4846-b16e-558b15289f38
                © 2011. Published by The Company of Biologists Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License ( http://creativecommons.org/licenses/by-nc-sa/3.0), which permits unrestricted non-commercial use, distribution and reproduction in any medium provided that the original work is properly cited and all further distributions of the work or adaptation are subject to the same Creative Commons License terms

                History
                Categories
                Perspective
                Custom metadata
                January 2011

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article

                scite_

                Similar content362

                Cited by133

                Most referenced authors1,172