11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sm and U2B″ proteins redistribute to different nuclear domains in dormant and proliferating onion cells

      ,  
      Planta
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Monoclonal antibodies against the spliceosomal proteins Sm and U2B", and against p105, a protein component of interchromatin granules, were used to investigate the nuclear distribution of the splicing factors in Allium cepa L. meristematic cells. Confocal microscopy showed that in steady-state proliferating cells, the spliceosomal components were distributed into two nuclear domains: (i) a diffuse nucleoplasmic network similar to that formed by interchromatin granules and (ii) numerous Cajal bodies. These domains were the counterpart of the perichromatin fibrils and granules, interchromatin granules and Cajal bodies observed by electron microscopy after EDTA and bismuth oxynitrate stainings. Dormant cells showed a nuclear distribution of the proteins in small Cajal bodies and numerous micro-speckles, correlated with the distribution of ribonucleoproteins (RNPs) observed by electron microscopy. The spliceosomal proteins relocated to the diffuse nucleoplasmic network and Cajal bodies when the cells were released from dormancy by water soaking and they re-started their proliferative activity. Inhibition of RNA synthesis by 5,6-dichloro-1-beta- d-ribofuranosylbenzimidazole (DRB) treatment in proliferating cells demonstrated that the micro-speckles were not the morphological expression of a transcription block. Fractionation and confocal microscopy studies showed a differential association of the splicing factors with the nuclear matrix depending not only on the protein, but also on nuclear activity. Our results suggest a reversible relocation of the spliceosomal proteins between different sub-nuclear domains in physiological conditions. We report here an unusual nuclear domain in dormant nuclei, the micro-speckles, corresponding to storage sites for RNPs, which were rapidly mobilised after water imbibition.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          A unified theory of gene expression.

          The human genome has been called "the blueprint for life." This master plan is realized through the process of gene expression. Recent progress has revealed that many of the steps in the pathway from gene sequence to active protein are connected, suggesting a unified theory of gene expression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spliceosomal UsnRNP biogenesis, structure and function.

            Significant advances have been made in elucidating the biogenesis pathway and three-dimensional structure of the UsnRNPs, the building blocks of the spliceosome. U2 and U4/U6*U5 tri-snRNPs functionally associate with the pre-mRNA at an earlier stage of spliceosome assembly than previously thought, and additional evidence supporting UsnRNA-mediated catalysis of pre-mRNA splicing has been presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biogenesis of small nucleolar ribonucleoproteins.

              Eukaryotic cells contain a very complex population of small nucleolar RNAs. They function, as small nucleolar ribonucleoproteins, in pre-ribosomal RNA processing reactions, and also guide methylation and pseudouridylation of ribosomal RNA, spliceosomal small nuclear RNAs, and possibly other cellular RNAs. Synthesis of small nucleolar RNAs frequently follows unusual strategies. Some newly discovered brain-specific small nucleolar RNAs of unknown function are encoded in introns of tandemly repeated units, expression of which is paternally imprinted. Recent studies of the protein components and factors participating in small nucleolar ribonucleoprotein assembly have revealed interesting connections with other classes of cellular ribonucleoproteins such as spliceosomal small nuclear ribonucleoproteins and telomerase. Cajal bodies emerge as nuclear structures important for the biogenesis and function of small nucleolar ribonucleoproteins.
                Bookmark

                Author and article information

                Journal
                Planta
                Planta
                Springer Science and Business Media LLC
                0032-0935
                1432-2048
                May 2003
                January 25 2003
                May 2003
                : 217
                : 1
                : 21-31
                Article
                10.1007/s00425-002-0966-3
                12721845
                662d955b-dbef-4bb5-905c-d01b5be497ad
                © 2003

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article