15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      miR-874-3p is down-regulated in hepatocellular carcinoma and negatively regulates PIN1 expression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          PIN1 is a peptidyl-prolyl cis/trans isomerase (PPIase) that regulates multiple signaling pathways to control cell fate and is found to be over-expressed in cancers, including hepatocellular carcinoma (HCC). However, the regulation of PIN1 in HCC remains poorly defined. Micro-RNAs (miRNAs) have been reported to play a pivotal role in oncogenesis by targeting the 3′-untranslated region (UTR) of mRNAs encoded by oncogenes and tumour suppressor genes, thereby suppressing the levels of both oncoproteins and tumour suppressors. In this report, we aimed to identify miRNAs that suppress PIN1 expression and to determine their role in HCC. By searching the TargetScan database, miR-874-3p was identified as a potential negative regulator of PIN1. miR-874-3p was demonstrated to bind the 3′UTR of PIN1 mRNA directly to suppress expression of PIN1. Functionally, over-expression of miR-874-3p in HCC cell line PLC/PRF/5 inhibited cell growth and colony formation in-vitro, and promoted cellular apoptosis. Furthermore, these tumour suppressive functions conferred by miR-874-3p were abrogated by over-expression of PIN1. Similarly, expression of miR-874-3p in PLC/PRF/5 with PIN1 knocked-down did not further suppress cellular proliferation, suggesting that PIN1 was a major target of miR-874-3p. More importantly, miR-874-3p was found to be down-regulated in HCC tissues and its expression was negatively correlated with that of PIN1. Down-regulation of miR-874-3p was also associated with poorly differentiated tumour cells, more advanced staging, and inferior patient outcomes. In addition, over-expression of miR-874-3p suppressed tumour growth in vivo. Taken together, our data suggested that miR-874-3p plays a tumour suppressive role in HCC through down-regulation of PIN1.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          A human peptidyl-prolyl isomerase essential for regulation of mitosis.

          The NIMA kinase is essential for progression through mitosis in Aspergillus nidulans, and there is evidence for a similar pathway in other eukaryotic cells. Here we describe the human protein Pin1, a peptidyl-prolyl cis/trans isomerase (PPIase) that interacts with NIMA. PPIases are important in protein folding, assembly and/or transport, but none has so far been shown to be required for cell viability. Pin1 is nuclear PPIase containing a WW protein interaction domain, and is structurally and functionally related to Ess1/Ptf1, an essential protein in budding yeast. PPIase activity is necessary for Ess1/Pin1 function in yeast. Depletion of Pin1/Ess1 from yeast or HeLa cells induces mitotic arrest, whereas HeLa cells overexpressing Pin1 arrest in the G2 phase of the cell cycle. Pin1 is thus an essential PPIase that regulates mitosis presumably by interacting with NIMA and attenuating its mitosis-promoting activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent.

            The human rotamase or peptidyl-prolyl cis-trans isomerase Pin1 is a conserved mitotic regulator essential for the G2/M transition of the eukaryotic cell cycle. We report the 1.35 A crystal structure of Pin1 complexed with an AlaPro dipeptide and the initial characterization of Pin1's functional properties. The crystallographic structure as well as pH titration studies and mutagenesis of an active site cysteine suggest a catalytic mechanism that includes general acid-base and covalent catalysis during peptide bond isomerization. Pin1 displays a preference for an acidic residue N-terminal to the isomerized proline bond due to interaction of this acidic side chain with a basic cluster. This raises the possibility of phosphorylation-mediated control of Pin1-substrate interactions in cell cycle regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer

              A common key regulator of oncogenic signaling pathways in multiple tumor types is the unique isomerase Pin1. However, available Pin1 inhibitors lack the required specificity and potency. Using mechanism-based screening, here we find that all-trans retinoic acid (ATRA)--a therapy for acute promyelocytic leukemia (APL) that is considered the first example of targeted therapy in cancer, but its drug target remains elusive--inhibits and degrades active Pin1 selectively in cancer cells by directly binding to the substrate phosphate- and proline-binding pockets in the Pin1 active site. ATRA-induced Pin1 ablation degrades the fusion oncogene PML-RARα and treats APL in cell and animal models and human patients. ATRA-induced Pin1 ablation also inhibits triple negative breast cancer cell growth in human cells and in animal models by acting on many Pin1 substrate oncogenes and tumor suppressors. Thus, ATRA simultaneously blocks multiple Pin1-regulated cancer-driving pathways, an attractive property for treating aggressive and drug-resistant tumors.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                14 February 2017
                5 January 2017
                : 8
                : 7
                : 11343-11355
                Affiliations
                1 Department of Medicine, The University of Hong Kong, Hong Kong
                2 Department of Pathology and State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
                Author notes
                Correspondence to: Eric Tse, ewctse@ 123456hku.hk
                Article
                14526
                10.18632/oncotarget.14526
                5355269
                28076852
                6627c19e-ca1b-4ea7-8030-c874119a9d1b
                Copyright: © 2017 Leong et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 May 2016
                : 27 December 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                micro-rna,mir-874-3p,peptidyl-prolyl-isomerase,pin1,hepatocellular carcinoma

                Comments

                Comment on this article