9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dysregulated expression of monoacylglycerol lipase is a marker for anti-diabetic drug metformin-targeted therapy to correct impaired neurogenesis and spatial memory in Alzheimer's disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rationale: Monoacylglycerol lipase (Mgll), a hydrolase that breaks down the endocannabinoid 2-arachidonoyl glycerol (2-AG) to produce arachidonic acid (ARA), is a potential target for neurodegenerative diseases, such as Alzheimer's disease (AD). Increasing evidence shows that impairment of adult neurogenesis by perturbed lipid metabolism predisposes patients to AD. However, it remains unknown what causes aberrant expression of Mgll in AD and how Mgll-regulated lipid metabolism impacts adult neurogenesis, thus predisposing to AD during aging. Here, we identify Mgll as an aging-induced factor that impairs adult neurogenesis and spatial memory in AD, and show that metformin, an FDA-approved anti-diabetic drug, can reduce the expression of Mgll to reverse impaired adult neurogenesis, prevent spatial memory decline and reduce β-amyloid accumulation.

          Methods: Mgll expression was assessed in both human AD patient post-mortem hippocampal tissues and 3xTg-AD mouse model. In addition, we used both the 3xTg-AD animal model and the CbpS436A genetic knock-in mouse model to identify that elevated Mgll expression is caused by the attenuation of the aPKC-CBP pathway, involving atypical protein kinase C (aPKC)-stimulated Ser436 phosphorylation of histone acetyltransferase CBP through biochemical methods. Furthermore, we performed in vivo adult neurogenesis assay with BrdU/EdU labelling and Morris water maze task in both animal models following pharmacological treatments to show the key role of Mgll in metformin-corrected neurogenesis and spatial memory deficits of AD through reactivating the aPKC-CBP pathway. Finally, we performed in vitro adult neurosphere assays using both animal models to study the role of the aPKC-CBP mediated Mgll repression in determining adult neural stem/progenitor cell (NPC) fate.

          Results: Here, we demonstrate that aging-dependent induction of Mgll is observed in the 3xTg-AD model and human AD patient post-mortem hippocampal tissues. Importantly, we discover that elevated Mgll expression is caused by the attenuation of the aPKC-CBP pathway. The accumulation of Mgll in the 3xTg-AD mice reduces the genesis of newborn neurons and perturbs spatial memory. However, we find that metformin-stimulated aPKC-CBP pathway decreases Mgll expression to recover these deficits in 3xTg-AD. In addition, we reveal that elevated Mgll levels in cultured adult NPCs from both 3xTg-AD and CbpS436A animal models are responsible for their NPC neuronal differentiation deficits.

          Conclusion: Our findings set the stage for development of a clinical protocol where Mgll would serve as a biomarker in early stages of AD to identify potential metformin-responsive AD patients to restore their neurogenesis and spatial memory.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus.

          Although hippocampal neurogenesis has been described in many adult mammals, the functional impact of this process on physiology and behavior remains unclear. In the present study, we used two independent methods to ablate hippocampal neurogenesis and found that each procedure caused a limited behavioral deficit and a loss of synaptic plasticity within the dentate gyrus. Specifically, focal X irradiation of the hippocampus or genetic ablation of glial fibrillary acidic protein-positive neural progenitor cells impaired contextual fear conditioning but not cued conditioning. Hippocampal-dependent spatial learning tasks such as the Morris water maze and Y maze were unaffected. These findings show that adult-born neurons make a distinct contribution to some but not all hippocampal functions. In a parallel set of experiments, we show that long-term potentiation elicited in the dentate gyrus in the absence of GABA blockers requires the presence of new neurons, as it is eliminated by each of our ablation procedures. These data show that new hippocampal neurons can be preferentially recruited over mature granule cells in vitro and may provide a framework for how this small cell population can influence behavior.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol.

            Endogenous ligands for cannabinoid receptors ("endocannabinoids") include the lipid transmitters anandamide and 2-arachidonoylglycerol (2-AG). Endocannabinoids modulate a diverse set of physiological processes and are tightly regulated by enzymatic biosynthesis and degradation. Termination of anandamide signaling by fatty acid amide hydrolase (FAAH) is well characterized, but less is known about the inactivation of 2-AG, which can be hydrolyzed by multiple enzymes in vitro, including FAAH and monoacylglycerol lipase (MAGL). Here, we have taken a functional proteomic approach to comprehensively map 2-AG hydrolases in the mouse brain. Our data reveal that approximately 85% of brain 2-AG hydrolase activity can be ascribed to MAGL, and that the remaining 15% is mostly catalyzed by two uncharacterized enzymes, ABHD6 and ABHD12. Interestingly, MAGL, ABHD6, and ABHD12 display distinct subcellular distributions, suggesting that they may control different pools of 2-AG in the nervous system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adult-Generated Hippocampal Neurons Allow the Flexible Use of Spatially Precise Learning Strategies

              Despite enormous progress in the past few years the specific contribution of newly born granule cells to the function of the adult hippocampus is still not clear. We hypothesized that in order to solve this question particular attention has to be paid to the specific design, the analysis, and the interpretation of the learning test to be used. We thus designed a behavioral experiment along hypotheses derived from a computational model predicting that new neurons might be particularly relevant for learning conditions, in which novel aspects arise in familiar situations, thus putting high demands on the qualitative aspects of (re-)learning. In the reference memory version of the water maze task suppression of adult neurogenesis with temozolomide (TMZ) caused a highly specific learning deficit. Mice were tested in the hidden platform version of the Morris water maze (6 trials per day for 5 days with a reversal of the platform location on day 4). Testing was done at 4 weeks after the end of four cycles of treatment to minimize the number of potentially recruitable new neurons at the time of testing. The reduction of neurogenesis did not alter longterm potentiation in CA3 and the dentate gyrus but abolished the part of dentate gyrus LTP that is attributed to the new neurons. TMZ did not have any overt side effects at the time of testing, and both treated mice and controls learned to find the hidden platform. Qualitative analysis of search strategies, however, revealed that treated mice did not advance to spatially precise search strategies, in particular when learning a changed goal position (reversal). New neurons in the dentate gyrus thus seem to be necessary for adding flexibility to some hippocampus-dependent qualitative parameters of learning. Our finding that a lack of adult-generated granule cells specifically results in the animal's inability to precisely locate a hidden goal is also in accordance with a specialized role of the dentate gyrus in generating a metric rather than just a configurational map of the environment. The discovery of highly specific behavioral deficits as consequence of a suppression of adult hippocampal neurogenesis thus allows to link cellular hippocampal plasticity to well-defined hypotheses from theoretical models.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2020
                15 May 2020
                : 10
                : 14
                : 6337-6360
                Affiliations
                [1 ]Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
                [2 ]Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
                [3 ]Research Center of the University of Montreal Hospital (CRCHUM), Montreal, QC H2X 0A9, Canada.
                [4 ]CNS Research Group (GRSNC), Montreal, QC H3T 1J4, Canada.
                [5 ]Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
                [6 ]Departments of Pediatrics and Pharmacology, Johns Hopkins Medical School, Baltimore, MD, 21287, USA.
                [7 ]Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
                [8 ]Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria.
                [9 ]CERVO Brain Research Centre, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, G1J 2G3, Canada.
                [10 ]University of Ottawa Brain and Mind Research Institute, Ottawa, ON, K1H 8M5, Canada.
                [11 ]Canadian Partnership for Stroke Recovery, Ottawa, ON, K1G 5Z3, Canada.
                Author notes
                ✉ Corresponding author: Jing Wang, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada K1H 8L6. Email: jiwang@ 123456ohri.ca Telephone: 613-737-8899 ext. 71954.

                *Co-first authors

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov10p6337
                10.7150/thno.44962
                7255032
                32483456
                660c2c8f-6798-4e16-9909-dcd137ea5e4c
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 15 February 2020
                : 28 April 2020
                Categories
                Research Paper

                Molecular medicine
                monoacylglycerol lipase,metformin,adult neurogenesis,spatial memory,alzheimer's disease

                Comments

                Comment on this article