65
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia

      research-article
      , DSc a , , * , , PhD a , , , PhD a , , PhD a , , PhD a , , MSc a , , MSc a , , MSc a , , MSc a , , MSc a , , MSc a , , MSc a , , MSc a , , PhD a , , PhD a , , MSc a , , MSc a , , PhD a , , PhD a , , MSc a , , PhD a , , MSc a , , PhD a , , DSc a , , PhD a , , PhD b , , PhD b , , Prof, DSc c , , MD d , , DSc e , , DSc a , , Prof, DSc a
      Lancet (London, England)
      Elsevier Ltd.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We developed a heterologous COVID-19 vaccine consisting of two components, a recombinant adenovirus type 26 (rAd26) vector and a recombinant adenovirus type 5 (rAd5) vector, both carrying the gene for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (rAd26-S and rAd5-S). We aimed to assess the safety and immunogenicity of two formulations (frozen and lyophilised) of this vaccine.

          Methods

          We did two open, non-randomised phase 1/2 studies at two hospitals in Russia. We enrolled healthy adult volunteers (men and women) aged 18–60 years to both studies. In phase 1 of each study, we administered intramuscularly on day 0 either one dose of rAd26-S or one dose of rAd5-S and assessed the safety of the two components for 28 days. In phase 2 of the study, which began no earlier than 5 days after phase 1 vaccination, we administered intramuscularly a prime-boost vaccination, with rAd26-S given on day 0 and rAd5-S on day 21. Primary outcome measures were antigen-specific humoral immunity (SARS-CoV-2-specific antibodies measured by ELISA on days 0, 14, 21, 28, and 42) and safety (number of participants with adverse events monitored throughout the study). Secondary outcome measures were antigen-specific cellular immunity (T-cell responses and interferon-γ concentration) and change in neutralising antibodies (detected with a SARS-CoV-2 neutralisation assay). These trials are registered with ClinicalTrials.gov, NCT04436471 and NCT04437875.

          Findings

          Between June 18 and Aug 3, 2020, we enrolled 76 participants to the two studies (38 in each study). In each study, nine volunteers received rAd26-S in phase 1, nine received rAd5-S in phase 1, and 20 received rAd26-S and rAd5-S in phase 2. Both vaccine formulations were safe and well tolerated. The most common adverse events were pain at injection site (44 [58%]), hyperthermia (38 [50%]), headache (32 [42%]), asthenia (21 [28%]), and muscle and joint pain (18 [24%]). Most adverse events were mild and no serious adverse events were detected. All participants produced antibodies to SARS-CoV-2 glycoprotein. At day 42, receptor binding domain-specific IgG titres were 14 703 with the frozen formulation and 11 143 with the lyophilised formulation, and neutralising antibodies were 49·25 with the frozen formulation and 45·95 with the lyophilised formulation, with a seroconversion rate of 100%. Cell-mediated responses were detected in all participants at day 28, with median cell proliferation of 2·5% CD4 + and 1·3% CD8 + with the frozen formulation, and a median cell proliferation of 1·3% CD4 + and 1·1% CD8 + with the lyophilised formulation.

          Interpretation

          The heterologous rAd26 and rAd5 vector-based COVID-19 vaccine has a good safety profile and induced strong humoral and cellular immune responses in participants. Further investigation is needed of the effectiveness of this vaccine for prevention of COVID-19.

          Funding

          Ministry of Health of the Russian Federation.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          An mRNA Vaccine against SARS-CoV-2 — Preliminary Report

          Abstract Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and spread globally, prompting an international effort to accelerate development of a vaccine. The candidate vaccine mRNA-1273 encodes the stabilized prefusion SARS-CoV-2 spike protein. Methods We conducted a phase 1, dose-escalation, open-label trial including 45 healthy adults, 18 to 55 years of age, who received two vaccinations, 28 days apart, with mRNA-1273 in a dose of 25 μg, 100 μg, or 250 μg. There were 15 participants in each dose group. Results After the first vaccination, antibody responses were higher with higher dose (day 29 enzyme-linked immunosorbent assay anti–S-2P antibody geometric mean titer [GMT], 40,227 in the 25-μg group, 109,209 in the 100-μg group, and 213,526 in the 250-μg group). After the second vaccination, the titers increased (day 57 GMT, 299,751, 782,719, and 1,192,154, respectively). After the second vaccination, serum-neutralizing activity was detected by two methods in all participants evaluated, with values generally similar to those in the upper half of the distribution of a panel of control convalescent serum specimens. Solicited adverse events that occurred in more than half the participants included fatigue, chills, headache, myalgia, and pain at the injection site. Systemic adverse events were more common after the second vaccination, particularly with the highest dose, and three participants (21%) in the 250-μg dose group reported one or more severe adverse events. Conclusions The mRNA-1273 vaccine induced anti–SARS-CoV-2 immune responses in all participants, and no trial-limiting safety concerns were identified. These findings support further development of this vaccine. (Funded by the National Institute of Allergy and Infectious Diseases and others; mRNA-1273 ClinicalTrials.gov number, NCT04283461).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target

            A novel infectious disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was detected in Wuhan, China, in December 2019. The disease (COVID-19) spread rapidly, reaching epidemic proportions in China, and has been found in 27 other countries. As of February 27, 2020, over 82,000 cases of COVID-19 were reported, with > 2800 deaths. No specific therapeutics are available, and current management includes travel restrictions, patient isolation, and supportive medical care. There are a number of pharmaceuticals already being tested [1, 2], but a better understanding of the underlying pathobiology is required. In this context, this article will briefly review the rationale for angiotensin-converting enzyme 2 (ACE2) receptor as a specific target. SARS-CoV-2 and severe acute respiratory syndrome coronavirus (SARS-CoV) use ACE2 receptor to facilitate viral entry into target cells SARS-CoV-2 has been sequenced [3]. A phylogenetic analysis [3, 4] found a bat origin for the SARS-CoV-2. There is a diversity of possible intermediate hosts for SARS-CoV-2, including pangolins, but not mice and rats [5]. There are many similarities of SARS-CoV-2 with the original SARS-CoV. Using computer modeling, Xu et al. [6] found that the spike proteins of SARS-CoV-2 and SARS-CoV have almost identical 3-D structures in the receptor-binding domain that maintains van der Waals forces. SARS-CoV spike protein has a strong binding affinity to human ACE2, based on biochemical interaction studies and crystal structure analysis [7]. SARS-CoV-2 and SARS-CoV spike proteins share 76.5% identity in amino acid sequences [6] and, importantly, the SARS-CoV-2 and SARS-CoV spike proteins have a high degree of homology [6, 7]. Wan et al. [4] reported that residue 394 (glutamine) in the SARS-CoV-2 receptor-binding domain (RBD), corresponding to residue 479 in SARS-CoV, can be recognized by the critical lysine 31 on the human ACE2 receptor [8]. Further analysis even suggested that SARS-CoV-2 recognizes human ACE2 more efficiently than SARS-CoV increasing the ability of SARS-CoV-2 to transmit from person to person [4]. Thus, the SARS-CoV-2 spike protein was predicted to also have a strong binding affinity to human ACE2. This similarity with SARS-CoV is critical because ACE2 is a functional SARS-CoV receptor in vitro [9] and in vivo [10]. It is required for host cell entry and subsequent viral replication. Overexpression of human ACE2 enhanced disease severity in a mouse model of SARS-CoV infection, demonstrating that viral entry into cells is a critical step [11]; injecting SARS-CoV spike into mice worsened lung injury. Critically, this injury was attenuated by blocking the renin-angiotensin pathway and depended on ACE2 expression [12]. Thus, for SARS-CoV pathogenesis, ACE2 is not only the entry receptor of the virus but also protects from lung injury. We therefore previously suggested that in contrast to most other coronaviruses, SARS-CoV became highly lethal because the virus deregulates a lung protective pathway [10, 12]. Zhou et al. [13] demonstrated that overexpressing ACE2 from different species in HeLa cells with human ACE2, pig ACE2, civet ACE2 (but not mouse ACE2) allowed SARS-CoV-2 infection and replication, thereby directly showing that SARS-CoV-2 uses ACE2 as a cellular entry receptor. They further demonstrated that SARS-CoV-2 does not use other coronavirus receptors such as aminopeptidase N and dipeptidyl peptidase 4 [13]. In summary, the SARS-CoV-2 spike protein directly binds with the host cell surface ACE2 receptor facilitating virus entry and replication. Enrichment distribution of ACE2 receptor in human alveolar epithelial cells (AEC) A key question is why the lung appears to be the most vulnerable target organ. One reason is that the vast surface area of the lung makes the lung highly susceptible to inhaled viruses, but there is also a biological factor. Using normal lung tissue from eight adult donors, Zhao et al. [14] demonstrated that 83% of ACE2-expressing cells were alveolar epithelial type II cells (AECII), suggesting that these cells can serve as a reservoir for viral invasion. In addition, gene ontology enrichment analysis showed that the ACE2-expressing AECII have high levels of multiple viral process-related genes, including regulatory genes for viral processes, viral life cycle, viral assembly, and viral genome replication [14], suggesting that the ACE2-expressing AECII facilitate coronaviral replication in the lung. Expression of the ACE2 receptor is also found in many extrapulmonary tissues including heart, kidney, endothelium, and intestine [15–19]. Importantly, ACE2 is highly expressed on the luminal surface of intestinal epithelial cells, functioning as a co-receptor for nutrient uptake, in particular for amino acid resorption from food [20]. We therefore predict that the intestine might also be a major entry site for SARS-CoV-2 and that the infection might have been initiated by eating food from the Wuhan market, the putative site of the outbreak. Whether SARS-CoV-2 can indeed infect the human gut epithelium has important implications for fecal–oral transmission and containment of viral spread. ACE2 tissue distribution in other organs could explain the multi-organ dysfunction observed in patients [21–23]. Of note, however, according to the Centers for Disease Control and Prevention [24], whether a person can get COVID-19 by touching surfaces or objects that have virus on them and then touching mucus membranes is yet to be confirmed. Potential approaches to address ACE2-mediated COVID-19 There are several potential therapeutic approaches (Fig. 1). Spike protein-based vaccine. Development of a spike1 subunit protein-based vaccine may rely on the fact that ACE2 is the SARS-CoV-2 receptor. Cell lines that facilitate viral replication in the presence of ACE2 may be most efficient in large-scale vaccine production. Inhibition of transmembrane protease serine 2 (TMPRSS2) activity. Hoffman et al. [25] recently demonstrated that initial spike protein priming by transmembrane protease serine 2 (TMPRSS2) is essential for entry and viral spread of SARS-CoV-2 through interaction with the ACE2 receptor [26, 27]. The serine protease inhibitor camostat mesylate, approved in Japan to treat unrelated diseases, has been shown to block TMPRSS2 activity [28, 29] and is thus an interesting candidate. Blocking ACE2 receptor. The interaction sites between ACE2 and SARS-CoV have been identified at the atomic level and from studies to date should also hold true for interactions between ACE2 and SARS-CoV-2. Thus, one could target this interaction site with antibodies or small molecules. Delivering excessive soluble form of ACE2. Kuba et al. [10] demonstrated in mice that SARS-CoV downregulates ACE2 protein (but not ACE) by binding its spike protein, contributing to severe lung injury. This suggests that excessive ACE2 may competitively bind with SARS-CoV-2 not only to neutralize the virus but also rescue cellular ACE2 activity which negatively regulates the renin-angiotensin system (RAS) to protect the lung from injury [12, 30]. Indeed, enhanced ACE activity and decreased ACE2 availability contribute to lung injury during acid- and ventilator-induced lung injury [12, 31, 32]. Thus, treatment with a soluble form of ACE2 itself may exert dual functions: (1) slow viral entry into cells and hence viral spread [7, 9] and (2) protect the lung from injury [10, 12, 31, 32]. Notably, a recombinant human ACE2 (rhACE2; APN01, GSK2586881) has been found to be safe, with no negative hemodynamic effects in healthy volunteers and in a small cohort of patients with ARDS [33–35]. The administration of APN01 rapidly decreased levels of its proteolytic target peptide angiotensin II, with a trend to lower plasma IL-6 concentrations. Our previous work on SARS-CoV pathogenesis makes ACE2 a rational and scientifically validated therapeutic target for the current COVID-19 pandemic. The availability of recombinant ACE2 was the impetus to assemble a multinational team of intensivists, scientists, and biotech to rapidly initiate a pilot trial of rhACE2 in patients with severe COVID-19 (Clinicaltrials.gov #NCT04287686). Fig. 1 Potential approaches to address ACE2-mediated COVID-19 following SARS-CoV-2 infection. The finding that SARS-CoV-2 and SARS-CoV use the ACE2 receptor for cell entry has important implications for understanding SARS-CoV-2 transmissibility and pathogenesis. SARS-CoV and likely SARS-CoV-2 lead to downregulation of the ACE2 receptor, but not ACE, through binding of the spike protein with ACE2. This leads to viral entry and replication, as well as severe lung injury. Potential therapeutic approaches include a SARS-CoV-2 spike protein-based vaccine; a transmembrane protease serine 2 (TMPRSS2) inhibitor to block the priming of the spike protein; blocking the surface ACE2 receptor by using anti-ACE2 antibody or peptides; and a soluble form of ACE2 which should slow viral entry into cells through competitively binding with SARS-CoV-2 and hence decrease viral spread as well as protecting the lung from injury through its unique enzymatic function. MasR—mitochondrial assembly receptor, AT1R—Ang II type 1 receptor
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial

              Summary Background The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might be curtailed by vaccination. We assessed the safety, reactogenicity, and immunogenicity of a viral vectored coronavirus vaccine that expresses the spike protein of SARS-CoV-2. Methods We did a phase 1/2, single-blind, randomised controlled trial in five trial sites in the UK of a chimpanzee adenovirus-vectored vaccine (ChAdOx1 nCoV-19) expressing the SARS-CoV-2 spike protein compared with a meningococcal conjugate vaccine (MenACWY) as control. Healthy adults aged 18–55 years with no history of laboratory confirmed SARS-CoV-2 infection or of COVID-19-like symptoms were randomly assigned (1:1) to receive ChAdOx1 nCoV-19 at a dose of 5 × 1010 viral particles or MenACWY as a single intramuscular injection. A protocol amendment in two of the five sites allowed prophylactic paracetamol to be administered before vaccination. Ten participants assigned to a non-randomised, unblinded ChAdOx1 nCoV-19 prime-boost group received a two-dose schedule, with the booster vaccine administered 28 days after the first dose. Humoral responses at baseline and following vaccination were assessed using a standardised total IgG ELISA against trimeric SARS-CoV-2 spike protein, a muliplexed immunoassay, three live SARS-CoV-2 neutralisation assays (a 50% plaque reduction neutralisation assay [PRNT50]; a microneutralisation assay [MNA50, MNA80, and MNA90]; and Marburg VN), and a pseudovirus neutralisation assay. Cellular responses were assessed using an ex-vivo interferon-γ enzyme-linked immunospot assay. The co-primary outcomes are to assess efficacy, as measured by cases of symptomatic virologically confirmed COVID-19, and safety, as measured by the occurrence of serious adverse events. Analyses were done by group allocation in participants who received the vaccine. Safety was assessed over 28 days after vaccination. Here, we report the preliminary findings on safety, reactogenicity, and cellular and humoral immune responses. The study is ongoing, and was registered at ISRCTN, 15281137, and ClinicalTrials.gov, NCT04324606. Findings Between April 23 and May 21, 2020, 1077 participants were enrolled and assigned to receive either ChAdOx1 nCoV-19 (n=543) or MenACWY (n=534), ten of whom were enrolled in the non-randomised ChAdOx1 nCoV-19 prime-boost group. Local and systemic reactions were more common in the ChAdOx1 nCoV-19 group and many were reduced by use of prophylactic paracetamol, including pain, feeling feverish, chills, muscle ache, headache, and malaise (all p<0·05). There were no serious adverse events related to ChAdOx1 nCoV-19. In the ChAdOx1 nCoV-19 group, spike-specific T-cell responses peaked on day 14 (median 856 spot-forming cells per million peripheral blood mononuclear cells, IQR 493–1802; n=43). Anti-spike IgG responses rose by day 28 (median 157 ELISA units [EU], 96–317; n=127), and were boosted following a second dose (639 EU, 360–792; n=10). Neutralising antibody responses against SARS-CoV-2 were detected in 32 (91%) of 35 participants after a single dose when measured in MNA80 and in 35 (100%) participants when measured in PRNT50. After a booster dose, all participants had neutralising activity (nine of nine in MNA80 at day 42 and ten of ten in Marburg VN on day 56). Neutralising antibody responses correlated strongly with antibody levels measured by ELISA (R 2=0·67 by Marburg VN; p<0·001). Interpretation ChAdOx1 nCoV-19 showed an acceptable safety profile, and homologous boosting increased antibody responses. These results, together with the induction of both humoral and cellular immune responses, support large-scale evaluation of this candidate vaccine in an ongoing phase 3 programme. Funding UK Research and Innovation, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research (NIHR), NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and the German Center for Infection Research (DZIF), Partner site Gießen-Marburg-Langen.
                Bookmark

                Author and article information

                Journal
                Lancet
                Lancet
                Lancet (London, England)
                Elsevier Ltd.
                0140-6736
                1474-547X
                4 September 2020
                4 September 2020
                Affiliations
                [a ]Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
                [b ]Federal State Autonomous Educational Institution of Higher Education I M Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
                [c ]Federal State Budgetary Institution “The Main Military Clinical Hospital named after N N Burdenko” of the Ministry of Defence of the Russian Federation, Moscow, Russia
                [d ]Branch No 7 of the Federal State Budgetary Institution “The Main Military Clinical Hospital named after N N Burdenko” of the Ministry of Defence of the Russian Federation, Moscow, Russia
                [e ]48 Central Research Institute of the Ministry of Defence of the Russian Federation, Moscow, Russia
                Author notes
                [* ]Correspondence to: Dr Denis Y Logunov, N F Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
                [†]

                Contributed equally

                Article
                S0140-6736(20)31866-3
                10.1016/S0140-6736(20)31866-3
                7471804
                32896291
                65fcf988-de55-4653-8a21-27e197ccbf54
                © 2020 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article