0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bioactivity, Uptake, and Distribution of Prothioconazole Loaded on Fluorescent Double-Hollow Shelled Mesoporous Silica in Soybean Plants

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application.

          The application of nanotechnology in pesticide delivery is relatively new and in the early stages of development. This technology aims to reduce the indiscriminate use of conventional pesticides and ensure their safe application. This critical review investigated the potential of nanotechnology, especially the nanoencapsulation process for pesticide delivery. In-depth investigation of various nanoencapsulation materials and techniques, efficacy of application, and current research trends are also presented. The focus of ongoing research was on the development of a nanoencapsulated pesticide formulation that has slow releasing properties with enhanced solubility, permeability, and stability. These properties are mainly achieved through either protecting the encapsulated active ingredients from premature degradation or increasing their pest control efficacy for a longer period. Nanoencapsulated pesticide formulation is able to reduce the dosage of pesticides and human exposure to them, which is environmentally friendly for crop protection. However, lack of knowledge of the mechanism of synthesis and lack of a cost-benefit analysis of nanoencapsulation materials hindered their application in pesticide delivery. Further investigation of these materials' behavior and their ultimate fate in the environment will help the establishment of a regulatory framework for their commercialization. The review provides fundamental and critical information for researchers and engineers in the field of nanotechnology and especially the use of nanoencapsulation techniques to deliver pesticides.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Blood-Brain-Barrier-Penetrating Albumin Nanoparticles for Biomimetic Drug Delivery via Albumin-Binding Protein Pathways for Antiglioma Therapy.

            Nutrient transporters have been explored for biomimetic delivery targeting the brain. The albumin-binding proteins (e.g., SPARC and gp60) are overexpressed in many tumors for transport of albumin as an amino acid and an energy source for fast-growing cancer cells. However, their application in brain delivery has rarely been investigated. In this work, SPARC and gp60 overexpression was found on glioma and tumor vessel endothelium; therefore, such pathways were explored for use in brain-targeting biomimetic delivery. We developed a green method for blood-brain barrier (BBB)-penetrating albumin nanoparticle synthesis, with the capacity to coencapsulate different drugs and no need for cross-linkers. The hydrophobic drugs (i.e., paclitaxel and fenretinide) yield synergistic effects to induce albumin self-assembly, forming dual drug-loaded nanoparticles. The albumin nanoparticles can penetrate the BBB and target glioma cells via the mechanisms of SPARC- and gp60-mediated biomimetic transport. Importantly, by modification with the cell-penetrating peptide LMWP, the albumin nanoparticles display enhanced BBB penetration, intratumoral infiltration, and cellular uptake. The LMWP-modified nanoparticles exhibited improved treatment outcomes in both subcutaneous and intracranial glioma models, with reduced toxic side effects. The therapeutic mechanisms were associated with induction of apoptosis, antiangiogenesis, and tumor immune microenvironment regulation. It provides a facile method for dual drug-loaded albumin nanoparticle preparation and a promising avenue for biomimetic delivery targeting the brain tumor based on combination therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nano-based smart pesticide formulations: Emerging opportunities for agriculture

              The incorporation of nanotechnology as a means for nanopesticides is in the early stage of development. The main idea behind this incorporation is to lower the indiscriminate use of conventional pesticides to be in line with safe environmental applications. Nanoencapsulated pesticides can provide controlled release kinetics, while efficiently enhancing permeability, stability, and solubility. Nanoencapsulation can enhance the pest-control efficiency over extended durations by preventing the premature degradation of active ingredients (AIs) under harsh environmental conditions. This review is thus organized to critically assess the significant role of nanotechnology for encapsulation of AIs for pesticides. The smart delivery of pesticides is essential to reduce the dosage of AIs with enhanced efficacy and to overcome pesticide loss (e.g., due to leaching and evaporation). The future trends of pesticide nanoformulations including nanomaterials as AIs and nanoemulsions of biopesticides are also explored. This review should thus offer a valuable guide for establishing regulatory frameworks related to field applications of these nano-based pesticides in the near future.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Agricultural and Food Chemistry
                J. Agric. Food Chem.
                American Chemical Society (ACS)
                0021-8561
                1520-5118
                March 22 2023
                March 10 2023
                March 22 2023
                : 71
                : 11
                : 4521-4535
                Affiliations
                [1 ]Key Laboratory of Agri-Food Safety of Anhui Province, Department of Pesticide Science, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
                [2 ]School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
                Article
                10.1021/acs.jafc.3c00200
                36896464
                65f8e901-eb6f-4f35-b79c-cb0b8f2ceb6a
                © 2023

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article