Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Copper oxide nanoparticles promote amyloid-β-triggered neurotoxicity through formation of oligomeric species as a prelude to Alzheimer's diseases.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein oligomerization is involved in the progression of Alzheimer's disease (AD). In general, a particle that can accelerate protein oligomerization should be considered a toxic material. Several studies reported the progress of nanoparticles (NPs) such as copper oxide (CuO) in biomedical platforms, however, they may have the ability to promote the protein oligomerization process. Here, we aimed to study the effect of CuO NPs on amyloid β1-42 (Aβ1-42) oligomerization and relevant neurotoxicity. CuO NPs were synthesized by precipitation technique and characterized by several methods such as ThT, Congo red, CD spectroscopic methods, and TEM imaging. The outcomes indicated that the fabricated CuO NPs with a size of around 50 nm led to a remarkable acceleration in Aβ1-42 oligomerization in a concentration-dependent manner through shortening the nucleation step and promoting the fibrillization rate. Moreover, cellular assays revealed that Aβ1-42 oligomers aged with CuO NPs were more toxic than Aβ1-42 oligomers untreated against SH-SY5Y cells in triggering cell mortality, membrane leakage, oxidative stress, and apoptosis. In conclusion, this study provides important information about the adverse effects of CuO NPs against proteins in the central nervous system to promote the formation of cytotoxic oligomers.

          Related collections

          Author and article information

          Journal
          Int J Biol Macromol
          International journal of biological macromolecules
          Elsevier BV
          1879-0003
          0141-8130
          May 15 2022
          : 207
          Affiliations
          [1 ] Department of Chemistry, College of Science, Kuwait University, Safat 13060, Kuwait; Cardiovascular and Metabolic Sciences Department, Learner Research Institute, Cleveland Clinic, OH 44195, USA. Electronic address: Laila.alhadad@ku.edu.kw.
          [2 ] Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, the Netherlands; Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. Electronic address: m.falahati@erasmusmc.nl.
          Article
          S0141-8130(22)00461-5
          10.1016/j.ijbiomac.2022.03.006
          35259430
          65ef3a5a-7e3e-4c4f-b790-7496e235fde9
          History

          Amyloid β(1–4),Copper oxide nanoparticles,Neurotoxicity,Oligomerization

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content187

          Cited by3