27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Whole-exome sequencing analysis of Waardenburg syndrome in a Chinese family

      letter

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Waardenburg syndrome (WS) is a dominantly inherited, genetically heterogeneous auditory-pigmentary syndrome characterized by non-progressive sensorineural hearing loss and iris discoloration. By whole-exome sequencing (WES), we identified a nonsense mutation (c.598C>T) in PAX3 gene, predicted to be disease causing by in silico analysis. This is the first report of genetically diagnosed case of WS PAX3 c.598C>T nonsense mutation in Chinese ethnic origin by WES and in silico functional prediction methods.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Waardenburg syndrome.

          Auditory-pigmentary syndromes are caused by physical absence of melanocytes from the skin, hair, eyes, or the stria vascularis of the cochlea. Dominantly inherited examples with patchy depigmentation are usually labelled Waardenburg syndrome (WS). Type I WS, characterised by dystopia canthorum, is caused by loss of function mutations in the PAX3 gene. Type III WS (Klein-Waardenburg syndrome, with abnormalities of the arms) is an extreme presentation of type I; some but not all patients are homozygotes. Type IV WS (Shah-Waardenburg syndrome with Hirschsprung disease) can be caused by mutations in the genes for endothelin-3 or one of its receptors, EDNRB. Type II WS is a heterogeneous group, about 15% of whom are heterozygous for mutations in the MITF (microphthalmia associated transcription factor) gene. All these forms show marked variability even within families, and at present it is not possible to predict the severity, even when a mutation is detected. Characterising the genes is helping to unravel important developmental pathways in the neural crest and its derivatives.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exome sequencing: dual role as a discovery and diagnostic tool.

            Recent developments in high-throughput sequence capture methods and next-generation sequencing technologies have now made exome sequencing a viable approach to elucidate the genetic basis of Mendelian disorders with hitherto unknown etiology. In addition, exome sequencing is increasingly being employed as a diagnostic tool for specific genetic diseases, particularly in the context of those disorders characterized by significant genetic and phenotypic heterogeneity, for example, Charcot-Marie-Tooth disease and congenital disorders of glycosylation. Such disorders are challenging to interrogate with conventional polymerase chain reaction-Sanger sequencing methods, because of the inherent difficulty in prioritizing candidate genes for diagnostic testing. Here, we explore the value of exome sequencing as a diagnostic tool and discuss whether exome sequencing can come to serve a dual role in diagnosis and discovery. We summarize the current status of exome sequencing, the technical challenges facing it, and its adaptation to diagnostics, and make recommendations for the use of exome sequencing as a routine diagnostic tool. Finally, we discuss pertinent ethical concerns, such as the use of exome sequencing data, originally generated in a diagnostic context, in research investigations. Copyright © 2011 American Neurological Association.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A new syndrome combining developmental anomalies of the eyelids, eyebrows and nose root with pigmentary defects of the iris and head hair and with congenital deafness.

                Bookmark

                Author and article information

                Journal
                Hum Genome Var
                Hum Genome Var
                Human Genome Variation
                Nature Publishing Group
                2054-345X
                29 June 2017
                2017
                : 4
                : 17027
                Affiliations
                [1 ]Inner Mongolia Molidawa Dawoerzu Zizhiqi People’s Hospital , Hulunbuir, China
                [2 ]Institute of Biomedical Sciences, Shanxi University , Taiyuan, China
                Author notes
                [3]

                Co-first authors.

                Article
                hgv201727
                10.1038/hgv.2017.27
                5489998
                65e0f608-d45c-4a88-939b-2f9ea6e87004
                Copyright © 2017 The Author(s)

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                : 21 February 2017
                : 25 April 2017
                : 26 April 2017
                Categories
                Data Report

                Comments

                Comment on this article