22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Egg proteins: fractionation, bioactive peptides and allergenicity : Egg proteins: fractionation, bioactive peptides and allergenicity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d4308935e83">Eggs are an important source of macro and micronutrients within the diet, comprised of proteins, lipids, vitamins, and minerals. They are constituted by a shell, the white (containing 110 g kg-1 proteins: ovalbumin, ovotransferrin, ovomucoid, lysozyme and ovomucin), and the yolk (containing 150-170 g kg-1 proteins: lipovitellins, phosvitin, livetins, and low-density lipoproteins). Owing to their nutritional value and biological characteristics, both the egg white and yolk proteins are extensively fractionated using different techniques (e.g., liquid chromatography, ultrafiltration, electrophoresis, and chemical precipitation), in which liquid chromatography is the most commonly used technique to obtain individual proteins with high protein recovery and purity to develop novel food products. However, concerns over allergenic responses induced by certain egg proteins (e.g., ovomucoid, ovalbumin, ovotransferrin, lysozyme, α-livetin, and lipoprotein YGP42) limit their widespread use. As such, processing technologies (e.g., thermal processing, enzymatic hydrolysis, and high-pressure treatment) are investigated to reduce the allergenicity by conformational changes. In addition, biological activities (e.g., antioxidant, antimicrobial, antihypertensive, and anticancer activities) associated with egg peptides have received more attention, in which enzyme hydrolysis is demonstrated as a promising way to break polypeptides sequences and produce bioactive peptides to provide nutritional and therapeutic benefits for human health. © 2018 Society of Chemical Industry. </p>

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          The relationship between peptide structure and antibacterial activity.

          Cationic antimicrobial peptides are a class of small, positively charged peptides known for their broad-spectrum antimicrobial activity. These peptides have also been shown to possess anti-viral and anti-cancer activity and, most recently, the ability to modulate the innate immune response. To date, a large number of antimicrobial peptides have been chemically characterized, however, few high-resolution structures are available. Structure-activity studies of these peptides reveal two main requirements for antimicrobial activity, (1) a cationic charge and (2) an induced amphipathic conformation. In addition to peptide conformation, the role of membrane lipid composition, specifically non-bilayer lipids, on peptide activity will also be discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antioxidant activity of proteins and peptides.

            Proteins can inhibit lipid oxidation by biologically designed mechanisms (e.g. antioxidant enzymes and iron-binding proteins) or by nonspecific mechanisms. Both of these types of antioxidative proteins contribute to the endogenous antioxidant capacity of foods. Proteins also have excellent potential as antioxidant additives in foods because they can inhibit lipid oxidation through multiple pathways including inactivation of reactive oxygen species, scavenging free radicals, chelation of prooxidative transition metals, reduction of hydroperoxides, and alteration of the physical properties of food systems. A protein's overall antioxidant activity can be increased by disruption of its tertiary structure to increase the solvent accessibility of amino acid residues that can scavenge free radicals and chelate prooxidative metals. The production of peptides through hydrolytic reactions seems to be the most promising technique to form proteinaceous antioxidants since peptides have substantially higher antioxidant activity than intact proteins. While proteins and peptides have excellent potential as food antioxidants, issues such as allergenicity and bitter off-flavors as well as their ability to alter food texture and color need to be addressed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action.

              Antimicrobial peptides encompass a number of different classes, including those that are rich in a particular amino acid. An important subset are peptides rich in Arg and Trp residues, such as indolicidin and tritrpticin, that have broad and potent antimicrobial activity. The importance of these two amino acids for antimicrobial activity was highlighted through the screening of a complete combinatorial library of hexapeptides. These residues possess some crucial chemical properties that make them suitable components of antimicrobial peptides. Trp has a distinct preference for the interfacial region of lipid bilayers, while Arg residues endow the peptides with cationic charges and hydrogen bonding properties necessary for interaction with the abundant anionic components of bacterial membranes. In combination, these two residues are capable of participating in cation-pi interactions, thereby facilitating enhanced peptide-membrane interactions. Trp sidechains are also implicated in peptide and protein folding in aqueous solution, where they contribute by maintaining native and nonnative hydrophobic contacts. This has been observed for the antimicrobial peptide from human lactoferrin, possibly restraining the peptide structure in a suitable conformation to interact with the bacterial membrane. These unique properties make the Arg- and Trp-rich antimicrobial peptides highly active even at very short peptide lengths. Moreover, they lead to structures for membrane-mimetic bound peptides that go far beyond regular alpha-helices and beta-sheet structures. In this review, the structures of a number of different Trp- and Arg-rich antimicrobial peptides are examined and some of the major mechanistic studies are presented.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of the Science of Food and Agriculture
                J. Sci. Food Agric.
                Wiley
                00225142
                December 2018
                December 2018
                July 20 2018
                : 98
                : 15
                : 5547-5558
                Affiliations
                [1 ]Department of Food and Bioproduct Sciences; University of Saskatchewan; Saskatoon Canada
                [2 ]Evova Foods Inc.; Saskatoon Canada
                Article
                10.1002/jsfa.9150
                29797412
                65d834cb-2afd-431d-a6b6-6314f5437b49
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,532

                Cited by31

                Most referenced authors792