6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Two-dimensional motion analysis of dynamic knee valgus identifies female high school athletes at risk of non-contact anterior cruciate ligament injury

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Female athletes are at greater risk of non-contact ACL injury. Three-dimensional kinematic analyses have shown that at-risk female athletes have a greater knee valgus angle during drop jumping. The purpose of this study was to evaluate the relationship between knee valgus angle and non-contact ACL injury in young female athletes using coronal-plane two-dimensional (2D) kinematic analyses of single-leg landing.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study.

          Female athletes participating in high-risk sports suffer anterior cruciate ligament injury at a 4- to 6-fold greater rate than do male athletes. Prescreened female athletes with subsequent anterior cruciate ligament injury will demonstrate decreased neuromuscular control and increased valgus joint loading, predicting anterior cruciate ligament injury risk. Cohort study; Level of evidence, 2. There were 205 female athletes in the high-risk sports of soccer, basketball, and volleyball prospectively measured for neuromuscular control using 3-dimensional kinematics (joint angles) and joint loads using kinetics (joint moments) during a jump-landing task. Analysis of variance as well as linear and logistic regression were used to isolate predictors of risk in athletes who subsequently ruptured the anterior cruciate ligament. Nine athletes had a confirmed anterior cruciate ligament rupture; these 9 had significantly different knee posture and loading compared to the 196 who did not have anterior cruciate ligament rupture. Knee abduction angle (P<.05) at landing was 8 degrees greater in anterior cruciate ligament-injured than in uninjured athletes. Anterior cruciate ligament-injured athletes had a 2.5 times greater knee abduction moment (P<.001) and 20% higher ground reaction force (P<.05), whereas stance time was 16% shorter; hence, increased motion, force, and moments occurred more quickly. Knee abduction moment predicted anterior cruciate ligament injury status with 73% specificity and 78% sensitivity; dynamic valgus measures showed a predictive r2 of 0.88. Knee motion and knee loading during a landing task are predictors of anterior cruciate ligament injury risk in female athletes. Female athletes with increased dynamic valgus and high abduction loads are at increased risk of anterior cruciate ligament injury. The methods developed may be used to monitor neuromuscular control of the knee joint and may help develop simpler measures of neuromuscular control that can be used to direct female athletes to more effective, targeted interventions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball.

            The mechanism for noncontact anterior cruciate ligament injury is still a matter of controversy. Video analysis of injury tapes is the only method available to extract biomechanical information from actual anterior cruciate ligament injury cases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study.

              Female athletes are at significantly greater risk of anterior cruciate ligament (ACL) injury than male athletes in the same high-risk sports. Decreased trunk (core) neuromuscular control may compromise dynamic knee stability. (1) Increased trunk displacement after sudden force release would be associated with increased knee injury risk; (2) coronal (lateral), not sagittal, plane displacement would be the strongest predictor of knee ligament injury; (3) logistic regression of factors related to core stability would accurately predict knee, ligament, and ACL injury risk; and (4) the predictive value of these models would differ between genders. Cohort study (prognosis); Level of evidence, 2. In this study, 277 collegiate athletes (140 female and 137 male) were prospectively tested for trunk displacement after a sudden force release. Analysis of variance and multivariate logistic regression identified predictors of risk in athletes who sustained knee injury. Twenty-five athletes (11 female and 14 male) sustained knee injuries over a 3-year period. Trunk displacement was greater in athletes with knee, ligament, and ACL injuries than in uninjured athletes (P < .05). Lateral displacement was the strongest predictor of ligament injury (P = .009). A logistic regression model, consisting of trunk displacements, proprioception, and history of low back pain, predicted knee ligament injury with 91% sensitivity and 68% specificity (P = .001). This model predicted knee, ligament, and ACL injury risk in female athletes with 84%, 89%, and 91% accuracy, but only history of low back pain was a significant predictor of knee ligament injury risk in male athletes. Factors related to core stability predicted risk of athletic knee, ligament, and ACL injuries with high sensitivity and moderate specificity in female, but not male, athletes.
                Bookmark

                Author and article information

                Journal
                Knee Surgery, Sports Traumatology, Arthroscopy
                Knee Surg Sports Traumatol Arthrosc
                Springer Science and Business Media LLC
                0942-2056
                1433-7347
                February 2018
                August 24 2017
                February 2018
                : 26
                : 2
                : 442-447
                Article
                10.1007/s00167-017-4681-9
                28840276
                65c494a4-59a9-49a2-b4ea-ce2578390e02
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article