8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Platelet-Targeted FVIII Gene Therapy Restores Hemostasis and Induces Immune Tolerance for Hemophilia A

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Platelets are small anucleated blood components primarily described as playing a fundamental role in hemostasis and thrombosis. Over the last decades, increasing evidence has demonstrated the role of platelets in modulating inflammatory reactions and immune responses. Platelets harbor several specialized organelles: granules, endosomes, lysosomes, and mitochondria that can synthesize proteins with pre-stored mRNAs when needed. While the functions of platelets in the immune response are well-recognized, little is known about the potential role of platelets in immune tolerance. Recent studies demonstrate that platelet-specific FVIII gene therapy can restore hemostasis and induce immune tolerance in hemophilia A mice, even mice with preexisting anti-FVIII immunity. Here, we review the potential mechanisms by which platelet-targeted FVIII gene therapy restores hemostasis in the presence of anti-FVIII inhibitory antibodies and induces immune tolerance in hemophilia A.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          The molecular mechanisms that control thrombopoiesis.

          Our understanding of thrombopoiesis--the formation of blood platelets--has improved greatly in the last decade, with the cloning and characterization of thrombopoietin, the primary regulator of this process. Thrombopoietin affects nearly all aspects of platelet production, from self-renewal and expansion of HSCs, through stimulation of the proliferation of megakaryocyte progenitor cells, to support of the maturation of these cells into platelet-producing cells. The molecular and cellular mechanisms through which thrombopoietin affects platelet production provide new insights into the interplay between intrinsic and extrinsic influences on hematopoiesis and highlight new opportunities to translate basic biology into clinical advances.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond.

            Platelets are small anucleate blood cells generated from megakaryocytes in the bone marrow and cleared in the reticuloendothelial system. At the site of vascular injury, platelet adhesion, activation and aggregation constitute the first wave of hemostasis. Blood coagulation, which is initiated by the intrinsic or extrinsic coagulation cascades, is the second wave of hemostasis. Activated platelets can also provide negatively-charged surfaces that harbor coagulation factors and markedly potentiate cell-based thrombin generation. Recently, deposition of plasma fibronectin, and likely other plasma proteins, onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that may occur even earlier than the first wave of hemostasis, platelet accumulation. Although no experimental evidence currently exists, it is conceivable that platelets may also contribute to this protein wave of hemostasis by releasing their granule fibronectin and other proteins that may facilitate fibronectin self- and non-self-assembly on the vessel wall. Thus, platelets may contribute to all three waves of hemostasis and are central players in this critical physiological process to prevent bleeding. Low platelet counts in blood caused by enhanced platelet clearance and/or impaired platelet production are usually associated with hemorrhage. Auto- and allo-immune thrombocytopenias such as idiopathic thrombocytopenic purpura and fetal and neonatal alloimmune thrombocytopenia may cause life-threatening bleeding such as intracranial hemorrhage. When triggered under pathological conditions such as rupture of an atherosclerotic plaque, excessive platelet activation and aggregation may result in thrombosis and vessel occlusion. This may lead to myocardial infarction or ischemic stroke, the major causes of mortality and morbidity worldwide. Platelets are also involved in deep vein thrombosis and thromboembolism, another leading cause of mortality. Although fibrinogen has been documented for more than half a century as essential for platelet aggregation, recent studies demonstrated that fibrinogen-independent platelet aggregation occurs in both gene deficient animals and human patients under physiological and pathological conditions (non-anti-coagulated blood). This indicates that other unidentified platelet ligands may play important roles in thrombosis and might be novel antithrombotic targets. In addition to their critical roles in hemostasis and thrombosis, emerging evidence indicates that platelets are versatile cells involved in many other pathophysiological processes such as innate and adaptive immune responses, atherosclerosis, angiogenesis, lymphatic vessel development, liver regeneration and tumor metastasis. This review summarizes the current knowledge of platelet biology, highlights recent advances in the understanding of platelet production and clearance, molecular and cellular events of thrombosis and hemostasis, and introduces the emerging roles of platelets in the immune system, vascular biology and tumorigenesis. The clinical implications of these basic science and translational research findings will also be discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              VWF protects FVIII from endocytosis by dendritic cells and subsequent presentation to immune effectors.

              Von Willebrand factor (VWF) is a chaperone molecule for procoagulant factor VIII (FVIII). Its role in the reduction of the immunogenicity of therapeutic FVIII in patients with hemophilia A has been evoked but lacks clear cellular and molecular rationale. Here, we demonstrate that VWF protects FVIII from being endocytosed by human dendritic cells (DCs) and subsequently presented to FVIII-specific T cells. The immunoprotective effect of VWF requires a physical interaction with FVIII because the endocytosis of FVIII was significantly restored on hindering the formation of the VWF-FVIII complex. Interestingly, VWF had no direct inhibitory effect either on the ability of DCs to present antigenic peptides or on the activation potency of CD4+ T cells. We thus propose that VWF may reduce the immunogenicity of FVIII by preventing, upstream from the activation of immune effectors, the entry of FVIII in professional antigen-presenting cells.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                12 June 2020
                2020
                : 11
                : 964
                Affiliations
                [1] 1Department of Pediatrics, Medical College of Wisconsin , Milwaukee, WI, United States
                [2] 2Blood Research Institute, Versiti Wisconsin , Milwaukee, WI, United States
                [3] 3Children's Research Institute, Children's Wisconsin , Milwaukee, WI, United States
                [4] 4MACC Fund Research Center , Milwaukee, WI, United States
                Author notes

                Edited by: Kathleen P. Pratt, Uniformed Services University of the Health Sciences, United States

                Reviewed by: Moanaro Biswas, Indiana University, United States; Trent Spencer, Emory University, United States

                *Correspondence: Qizhen Shi qshi@ 123456versiti.org

                This article was submitted to Immunological Tolerance and Regulation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2020.00964
                7303294
                32595633
                65b29a96-d2ce-4482-91bd-ecc650324925
                Copyright © 2020 Cai and Shi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 December 2019
                : 24 April 2020
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 52, Pages: 6, Words: 4904
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Categories
                Immunology
                Review

                Immunology
                platelets,gene therapy,immune tolerance,hemophilia a,factor viii
                Immunology
                platelets, gene therapy, immune tolerance, hemophilia a, factor viii

                Comments

                Comment on this article