0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasma induced dynamic coupling of microscopic factors to collaboratively promote EM losses coupling of transition metal dichalcogenide absorbers

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies.

          As a promising non-precious catalyst for the hydrogen evolution reaction (HER; refs ,,,,), molybdenum disulphide (MoS2) is known to contain active edge sites and an inert basal plane. Activating the MoS2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔGH) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Proper combinations of S-vacancy and strain yield the optimal ΔGH = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control.

            Although the performance of lithium ion-batteries continues to improve, their energy density and cycle life remain insufficient for applications in consumer electronics, transport and large-scale renewable energy storage. Silicon has a large charge storage capacity and this makes it an attractive anode material, but pulverization during cycling and an unstable solid-electrolyte interphase has limited the cycle life of silicon anodes to hundreds of cycles. Here, we show that anodes consisting of an active silicon nanotube surrounded by an ion-permeable silicon oxide shell can cycle over 6,000 times in half cells while retaining more than 85% of their initial capacity. The outer surface of the silicon nanotube is prevented from expansion by the oxide shell, and the expanding inner surface is not exposed to the electrolyte, resulting in a stable solid-electrolyte interphase. Batteries containing these double-walled silicon nanotube anodes exhibit charge capacities approximately eight times larger than conventional carbon anodes and charging rates of up to 20C (a rate of 1C corresponds to complete charge or discharge in one hour).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasma-Engraved Co3 O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction.

              Co3 O4 , which is of mixed valences Co(2+) and Co(3+) , has been extensively investigated as an efficient electrocatalyst for the oxygen evolution reaction (OER). The proper control of Co(2+) /Co(3+) ratio in Co3 O4 could lead to modifications on its electronic and thus catalytic properties. Herein, we designed an efficient Co3 O4 -based OER electrocatalyst by a plasma-engraving strategy, which not only produced higher surface area, but also generated oxygen vacancies on Co3 O4 surface with more Co(2+) formed. The increased surface area ensures the Co3 O4 has more sites for OER, and generated oxygen vacancies on Co3 O4 surface improve the electronic conductivity and create more active defects for OER. Compared to pristine Co3 O4 , the engraved Co3 O4 exhibits a much higher current density and a lower onset potential. The specific activity of the plasma-engraved Co3 O4 nanosheets (0.055 mA cm(-2) BET at 1.6 V) is 10 times higher than that of pristine Co3 O4 , which is contributed by the surface oxygen vacancies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Powder Materials
                Advanced Powder Materials
                Elsevier BV
                2772834X
                June 2024
                June 2024
                : 3
                : 3
                : 100180
                Article
                10.1016/j.apmate.2024.100180
                65b22032-0dda-4f7f-ace3-0ffaf00d0697
                © 2024

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/legal/tdmrep-license

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article