6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The whole prefrontal cortex is premotor cortex

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We propose that the entirety of the prefrontal cortex (PFC) can be seen as fundamentally premotor in nature. By this, we mean that the PFC consists of an action abstraction hierarchy whose core function is the potentiation and depotentiation of possible action plans at different levels of granularity. We argue that the apex of the hierarchy should revolve around the process of goal-selection, which we posit is inherently a form of optimization over action abstraction. Anatomical and functional evidence supports the idea that this hierarchy originates on the orbital surface of the brain and extends dorsally to motor cortex. Accordingly, our viewpoint positions the orbitofrontal cortex in a key role in the optimization of goal-selection policies, and suggests that its other proposed roles are aspects of this more general function. Our proposed perspective will reframe outstanding questions, open up new areas of inquiry and align theories of prefrontal function with evolutionary principles.

          This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.

          Related collections

          Most cited references144

          • Record: found
          • Abstract: found
          • Article: not found

          An integrative theory of prefrontal cortex function.

          The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task. We review neurophysiological, neurobiological, neuroimaging, and computational studies that support this theory and discuss its implications as well as further issues to be addressed
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The reward circuit: linking primate anatomy and human imaging.

            Although cells in many brain regions respond to reward, the cortical-basal ganglia circuit is at the heart of the reward system. The key structures in this network are the anterior cingulate cortex, the orbital prefrontal cortex, the ventral striatum, the ventral pallidum, and the midbrain dopamine neurons. In addition, other structures, including the dorsal prefrontal cortex, amygdala, hippocampus, thalamus, and lateral habenular nucleus, and specific brainstem structures such as the pedunculopontine nucleus, and the raphe nucleus, are key components in regulating the reward circuit. Connectivity between these areas forms a complex neural network that mediates different aspects of reward processing. Advances in neuroimaging techniques allow better spatial and temporal resolution. These studies now demonstrate that human functional and structural imaging results map increasingly close to primate anatomy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spontaneous behaviors drive multidimensional, brainwide activity

              Neuronal populations in sensory cortex produce variable responses to sensory stimuli and exhibit intricate spontaneous activity even without external sensory input. Cortical variability and spontaneous activity have been variously proposed to represent random noise, recall of prior experience, or encoding of ongoing behavioral and cognitive variables. Recording more than 10,000 neurons in mouse visual cortex, we observed that spontaneous activity reliably encoded a high-dimensional latent state, which was partially related to the mouse’s ongoing behavior and was represented not just in visual cortex but also across the forebrain. Sensory inputs did not interrupt this ongoing signal but added onto it a representation of external stimuli in orthogonal dimensions. Thus, visual cortical population activity, despite its apparently noisy structure, reliably encodes an orthogonal fusion of sensory and multidimensional behavioral information.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Philosophical Transactions of the Royal Society B: Biological Sciences
                Phil. Trans. R. Soc. B
                The Royal Society
                0962-8436
                1471-2970
                February 14 2022
                December 27 2021
                February 14 2022
                : 377
                : 1844
                Affiliations
                [1 ]Department of Neuroscience, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
                [2 ]Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
                Article
                10.1098/rstb.2020.0524
                34957853
                65ae7ae1-2263-42d1-898a-f62e687b7e0b
                © 2022

                https://royalsociety.org/journals/ethics-policies/data-sharing-mining/

                History

                Comments

                Comment on this article