13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dual Effect of Rosuvastatin on Glucose Homeostasis Through Improved Insulin Sensitivity and Reduced Insulin Secretion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Statins are beneficial in the treatment of cardiovascular disease (CVD), but these lipid-lowering drugs are associated with increased incidence of new on-set diabetes. The cellular mechanisms behind the development of diabetes by statins are elusive. Here we have treated mice on normal diet (ND) and high fat diet (HFD) with rosuvastatin. Under ND rosuvastatin lowered blood glucose through improved insulin sensitivity and increased glucose uptake in adipose tissue. In vitro rosuvastatin reduced insulin secretion and insulin content in islets. In the beta cell Ca 2 + signaling was impaired and the density of granules at the plasma membrane was increased by rosuvastatin treatment. HFD mice developed insulin resistance and increased insulin secretion prior to administration of rosuvastatin. Treatment with rosuvastatin decreased the compensatory insulin secretion and increased glucose uptake. In conclusion, our data shows dual effects on glucose homeostasis by rosuvastatin where insulin sensitivity is improved, but beta cell function is impaired.

          Highlights

          • Rosuvastatin lowered blood glucose in vivo most likely due to improved glucose uptake.

          • Rosuvastatin reduced insulin content and impaired Ca 2 + signaling in beta cells leading to reduced insulin secretion.

          • Dual effects of rosuvastatin in HFD mice though decreased compensatory insulin secretion and increased glucose uptake.

          Statins are a group of drugs used to lower blood cholesterol in individuals with a risk of developing cardiovascular disease. It has been shown in several studies that statins increase the risk of developing type 2 diabetes. This increased risk has not yet been explained. We have investigated the effect of rosuvastatin on blood glucose regulation in mice. We found that rosuvastatin has a beneficial effect on glucose uptake in muscles which results in lowered blood glucose. However, in the insulin producing beta cells rosuvastatin altered normal cell function something that might increase the risk of developing type 2 diabetes.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp.

          Several methods have been proposed to evaluate insulin sensitivity from the data obtained from the oral glucose tolerance test (OGTT). However, the validity of these indices has not been rigorously evaluated by comparing them with the direct measurement of insulin sensitivity obtained with the euglycemic insulin clamp technique. In this study, we compare various insulin sensitivity indices derived from the OGTT with whole-body insulin sensitivity measured by the euglycemic insulin clamp technique. In this study, 153 subjects (66 men and 87 women, aged 18-71 years, BMI 20-65 kg/m2) with varying degrees of glucose tolerance (62 subjects with normal glucose tolerance, 31 subjects with impaired glucose tolerance, and 60 subjects with type 2 diabetes) were studied. After a 10-h overnight fast, all subjects underwent, in random order, a 75-g OGTT and a euglycemic insulin clamp, which was performed with the infusion of [3-3H]glucose. The indices of insulin sensitivity derived from OGTT data and the euglycemic insulin clamp were compared by correlation analysis. The mean plasma glucose concentration divided by the mean plasma insulin concentration during the OGTT displayed no correlation with the rate of whole-body glucose disposal during the euglycemic insulin clamp (r = -0.02, NS). From the OGTT, we developed an index of whole-body insulin sensitivity (10,000/square root of [fasting glucose x fasting insulin] x [mean glucose x mean insulin during OGTT]), which is highly correlated (r = 0.73, P < 0.0001) with the rate of whole-body glucose disposal during the euglycemic insulin clamp. Previous methods used to derive an index of insulin sensitivity from the OGTT have relied on the ratio of plasma glucose to insulin concentration during the OGTT. Our results demonstrate the limitations of such an approach. We have derived a novel estimate of insulin sensitivity that is simple to calculate and provides a reasonable approximation of whole-body insulin sensitivity from the OGTT.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS.

            M Rodbell (1964)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes.

              This study characterizes the high-fat diet-fed mouse as a model for impaired glucose tolerance (IGT) and type 2 diabetes. Female C57BL/6J mice were fed a high-fat diet (58% energy by fat) or a normal diet (11% fat). Body weight was higher in mice fed the high-fat diet already after the first week, due to higher dietary intake in combination with lower metabolic efficiency. Circulating glucose increased after 1 week on high-fat diet and remained elevated at a level of approximately 1 mmol/l throughout the 12-month study period. In contrast, circulating insulin increased progressively by time. Intravenous glucose challenge revealed a severely compromised insulin response in association with marked glucose intolerance already after 1 week. To illustrate the usefulness of this model for the development of new treatment, mice were fed an orally active inhibitor of dipeptidyl peptidase-IV (LAF237) in the drinking water (0.3 mg/ml) for 4 weeks. This normalized glucose tolerance, as judged by an oral glucose tolerance test, in association with augmented insulin secretion. We conclude that the high-fat diet-fed C57BL/6J mouse model is a robust model for IGT and early type 2 diabetes, which may be used for studies on pathophysiology and development of new treatment.
                Bookmark

                Author and article information

                Contributors
                Journal
                EBioMedicine
                EBioMedicine
                EBioMedicine
                Elsevier
                2352-3964
                09 July 2016
                August 2016
                09 July 2016
                : 10
                : 185-194
                Affiliations
                [a ]Unit of Islet Cell Exocytosis, Dept Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University CRC 91-11, SUS Malmö, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
                [b ]Unit of Glucose Transport and Protein Trafficking, Dept of Experimental Medical Sciences, Lund University Diabetes Centre, Lund University BMC-C11, Sölvegatan 21, 222 84 Lund, Sweden
                [c ]Inst. Neuroscience and Physiology, Dept of Physiology, University of Gothenburg, Medicinaregatan 11-13, Box 432, 405 30 Gothenburg, Sweden
                [d ]Unit of Diabetes and Endocrinology, Dept Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University CRC 60-13, SUS Malmö, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
                Author notes
                [1]

                Shared co-senior authorship.

                Article
                S2352-3964(16)30312-7
                10.1016/j.ebiom.2016.07.007
                5006666
                27453321
                65963f7d-6bfc-4020-a4c2-35f7d7b52677
                © 2016 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 5 April 2016
                : 24 June 2016
                : 7 July 2016
                Categories
                Research Paper

                statin,insulin secretion,glucose uptake,glucose homeostasis,islet,beta cell,adipose tissue,muscle,ogtt,transmission electron microscopy,ca2 + measurements

                Comments

                Comment on this article