50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Developing Transgenic Jatropha Using the SbNHX1 Gene from an Extreme Halophyte for Cultivation in Saline Wasteland

      research-article
      * , , ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Jatropha is an important second-generation biofuel plant. Salinity is a major factor adversely impacting the growth and yield of several plants including Jatropha. SbNHX1 is a vacuolar Na +/H + antiporter gene that compartmentalises excess Na + ions into the vacuole and maintains ion homeostasis. We have previously cloned and characterised the SbNHX1 gene from an extreme halophyte, Salicornia brachiata. Transgenic plants of Jatropha curcas with the SbNHX1 gene were developed using microprojectile bombardment mediated transformation. Integration of the transgene was confirmed by PCR and Rt-PCR and the copy number was determined by real time qPCR. The present study of engineering salt tolerance in Jatropha is the first report to date. Salt tolerance of the transgenic lines JL2, JL8 and JL19 was confirmed by leaf senescence assay, chlorophyll estimation, plant growth, ion content, electrolyte leakage and malondialdehyde (MDA) content analysis. Transgenic lines showed better salt tolerance than WT up to 200 mM NaCl. Imparting salt tolerance to Jatropha using the SbNHX1 gene may open up the possibility of cultivating it in marginal salty land, releasing arable land presently under Jatropha cultivation for agriculture purposes. Apart from this, transgenic Jatropha can be cultivated with brackish water, opening up the possibility of sustainable cultivation of this biofuel plant in salty coastal areas.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: not found
          • Article: not found

          COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS.

          D ARNON (1949)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter.

            In Arabidopsis thaliana, the SOS1 (Salt Overly Sensitive 1) locus is essential for Na(+) and K(+) homeostasis, and sos1 mutations render plants more sensitive to growth inhibition by high Na(+) and low K(+) environments. SOS1 is cloned and predicted to encode a 127-kDa protein with 12 transmembrane domains in the N-terminal part and a long hydrophilic cytoplasmic tail in the C-terminal part. The transmembrane region of SOS1 has significant sequence similarities to plasma membrane Na(+)/H(+) antiporters from bacteria and fungi. Sequence analysis of various sos1 mutant alleles reveals several residues and regions in the transmembrane as well as the tail parts that are critical for SOS1 function in plant salt tolerance. SOS1 gene expression in plants is up-regulated in response to NaCl stress. This up-regulation is abated in sos3 or sos2 mutant plants, suggesting that it is controlled by the SOS3/SOS2 regulatory pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis.

              Agricultural productivity is severely affected by soil salinity. One possible mechanism by which plants could survive salt stress is to compartmentalize sodium ions away from the cytosol. Overexpression of a vacuolar Na+/H+ antiport from Arabidopsis thaliana in Arabidopsis plants promotes sustained growth and development in soil watered with up to 200 millimolar sodium chloride. This salinity tolerance was correlated with higher-than-normal levels of AtNHX1 transcripts, protein, and vacuolar Na+/H+ (sodium/proton) antiport activity. These results demonstrate the feasibility of engineering salt tolerance in plants.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                5 August 2013
                : 8
                : 8
                : e71136
                Affiliations
                [1]Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
                Virginia Tech, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BJ. Performed the experiments: MJ AJ. Analyzed the data: MJ AM. Wrote the paper: MJ AM BJ.

                Article
                PONE-D-13-22634
                10.1371/journal.pone.0071136
                3733712
                23940703
                656eeac6-5dc2-4e3f-9d4f-39decae1610c
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 May 2013
                : 2 July 2013
                Page count
                Pages: 10
                Funding
                The financial assistance received from CSIR ( www.csir.res.in), New Delhi (CSC0102: TapCoal) is duly acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Agriculture
                Biofuels
                Biodiesel
                Biology
                Biotechnology
                Plant Biotechnology
                Transgenic Plants

                Uncategorized
                Uncategorized

                Comments

                Comment on this article