9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      3-Deazauridine enhances the antileukemic action of 5-aza-2′-deoxycytidine and targets drug-resistance due to deficiency in deoxycytidine kinase

      , , ,
      Leukemia Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          New approaches should be sought to treat high-risk acute lymphoblastic leukemia (ALL). Since aberrant DNA methylation plays an important role in leukemogenesis of ALL, it can be targeted by 5-aza-2'-deoxycytidine (5-AZA-CdR), a potent inhibitor of DNA methylation. 5-AZA-CdR is a prodrug that is activated by deoxycytidine kinase (DCK). Leukemic cells lacking DCK are drug-resistant. In a previous phase I study, we reported that 5-AZA-CdR could induce remissions in ALL. However, some patients developed drug-resistance due to deficiency in DCK. These observations aroused our interest in 3-deazauridine (3-DU), a CTP synthetase inhibitor that is effective against leukemic cells deficient in DCK. In this report, we observed that 3-DU enhanced the in vitro antineoplastic action of 5-AZA-CdR on human leukemic cells by increasing its incorporation into DNA. Using an optimized dose-schedule we showed that this combination could cure some mice bearing L1210 leukemia, even in the presence of a subpopulation of drug-resistant (L1210/ARA-C) leukemic cells lacking DCK. 3-DU alone also cured some mice with L1210/ARA-C leukemia. In a pilot study on 3 relapsed patients with advanced ALL, the combination of 5-AZA-CdR and 3-DU produced a marked reduction in leukemic blasts, confirming our preclinical observations. Furthermore, after several treatments with these agents all three patients developed drug-resistance to 5-AZA-CdR as determined by an in vitro drug sensitivity test. In two patients we showed by enzymatic analysis that the drug-resistance was due to deficiency in DCK. Our preclinical and clinical results provide a strong rationale to further investigate the combination of 5-AZA-CdR and 3-DU for the treatment of advanced ALL. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

          Related collections

          Author and article information

          Journal
          Leukemia Research
          Leukemia Research
          Elsevier BV
          01452126
          January 2011
          January 2011
          : 35
          : 1
          : 110-118
          Article
          10.1016/j.leukres.2010.04.014
          20510451
          651d93c6-ac10-4469-937d-8b98f511d85f
          © 2011

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article