11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Time-restricted feeding downregulates cholesterol biosynthesis program via RORγ-mediated chromatin modification in porcine liver organoids

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Time-restricted feeding (TRF) is a dieting strategy based on nutrients availability and diurnal rhythm, shown to improve lipid metabolism efficiency. We have demonstrated previously that retinoic acid-related (RAR) orphan receptor (ROR) γ is the primary transcription factor controlling cholesterol (CHO) biosynthesis program of animals. However, the functional role of RORγ in liver physiology of pigs in response to TRF has not been determined, largely due to the lack of functional models and molecular tools. In the present study, we established porcine liver organoids and subjected them to restricted nutrients supply for 10-h during the light portion of the day.

          Results

          Our results showed that TRF regimen did not alter hepatocyte physiology, including unchanged cell viability, caspase 3/7 enzyme activity and the gene signature of cell proliferation in porcine liver organoids, compared to the control group ( P > 0.05). Furthermore, we found that TRF downregulated the hepatic CHO biosynthesis program at both mRNA and protein levels, along with the reduced cellular CHO content in porcine liver organoids ( P < 0.05). Using unbiased bioinformatic analysis of a previous ChIP-seq data and ChIP-qPCR validation, we revealed RORγ as the predominant transcription factor that responded to TRF, amongst the 12 targeted nuclear receptors (NRs) ( P < 0.05). This was likely through RORγ direct binding to the MVK gene (encoding mevalonate kinase). Finally, we showed that RORγ agonists and overexpression enhanced the enrichment of co-factor p300, histone marks H3K27ac and H3K4me1/2, as well as RNA polymerase II (Pol-II) at the locus of MVK, in TRF-porcine liver organoids, compared to TRF-vector control ( P < 0.05).

          Conclusions

          Our findings demonstrate that TRF triggers the RORγ-mediated chromatin remodeling at the locus of CHO biosynthesis genes in porcine liver organoids and further improves lipid metabolism.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Fast and accurate short read alignment with Burrows–Wheeler transform

          Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: rd@sanger.ac.uk
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The global obesity pandemic: shaped by global drivers and local environments

            The Lancet, 378(9793), 804-814
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet.

              While diet-induced obesity has been exclusively attributed to increased caloric intake from fat, animals fed a high-fat diet (HFD) ad libitum (ad lib) eat frequently throughout day and night, disrupting the normal feeding cycle. To test whether obesity and metabolic diseases result from HFD or disruption of metabolic cycles, we subjected mice to either ad lib or time-restricted feeding (tRF) of a HFD for 8 hr per day. Mice under tRF consume equivalent calories from HFD as those with ad lib access yet are protected against obesity, hyperinsulinemia, hepatic steatosis, and inflammation and have improved motor coordination. The tRF regimen improved CREB, mTOR, and AMPK pathway function and oscillations of the circadian clock and their target genes' expression. These changes in catabolic and anabolic pathways altered liver metabolome and improved nutrient utilization and energy expenditure. We demonstrate in mice that tRF regimen is a nonpharmacological strategy against obesity and associated diseases. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                kitty20010606@126.com
                17633532469@163.com
                zimengxin1@outlook.com
                2873654125@qq.com
                wangxl@yzu.edu.cn
                huyun@yzu.edu.cn
                Haoyu.Liu0523@outlook.com
                demincai@yzu.edu.cn
                Journal
                J Anim Sci Biotechnol
                J Anim Sci Biotechnol
                Journal of Animal Science and Biotechnology
                BioMed Central (London )
                1674-9782
                2049-1891
                2 November 2020
                2 November 2020
                2020
                : 11
                : 106
                Affiliations
                [1 ]GRID grid.268415.c, College of Animal Science and Technology, , Yangzhou University, ; Yangzhou, 225009 PR China
                [2 ]GRID grid.268415.c, Institute of Epigenetics and Epigenomics, Yangzhou University, ; Yangzhou, 225009 PR China
                Author information
                http://orcid.org/0000-0003-0500-5292
                Article
                511
                10.1186/s40104-020-00511-9
                7604961
                33292665
                64f8f1af-0868-457a-b299-757edac2863f
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 20 April 2020
                : 8 September 2020
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Animal science & Zoology
                cholesterol biosynthesis program,histone modification,pig,porcine liver organoids,rorγ,time-restricted feeding

                Comments

                Comment on this article