22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      SAM Domain-Based Protein Oligomerization Observed by Live-Cell Fluorescence Fluctuation Spectroscopy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sterile-alpha-motif (SAM) domains are common protein interaction motifs observed in organisms as diverse as yeast and human. They play a role in protein homo- and hetero-interactions in processes ranging from signal transduction to RNA binding. In addition, mutations in SAM domain and SAM-mediated oligomers have been linked to several diseases. To date, the observation of heterogeneous SAM-mediated oligomers in vivo has been elusive, which represents a common challenge in dissecting cellular biochemistry in live-cell systems. In this study, we report the oligomerization and binding stoichiometry of high-order, multi-component complexes of (SAM) domain proteins Ste11 and Ste50 in live yeast cells using fluorescence fluctuation methods. Fluorescence cross-correlation spectroscopy (FCCS) and 1-dimensional photon counting histogram (1dPCH) confirm the SAM-mediated interaction and oligomerization of Ste11 and Ste50. Two-dimensional PCH (2dPCH), with endogenously expressed proteins tagged with GFP or mCherry, uniquely indicates that Ste11 and Ste50 form a heterogeneous complex in the yeast cytosol comprised of a dimer of Ste11 and a monomer of Ste50. In addition, Ste50 also exists as a high order oligomer that does not interact with Ste11, and the size of this oligomer decreases in response to signals that activate the MAP kinase cascade. Surprisingly, a SAM domain mutant of Ste50 disrupted not only the Ste50 oligomers but also Ste11 dimerization. These results establish an in vivo model of Ste50 and Ste11 homo- and hetero-oligomerization and highlight the usefulness of 2dPCH for quantitative dissection of complex molecular interactions in genetic model organisms such as yeast.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae.

          Green fluorescent protein (GFP) has become an increasingly popular protein tag for determining protein localization and abundance. With the availability of GFP variants with altered fluorescence spectra, as well as GFP homologues from other organisms, multi-colour fluorescence with protein tags is now possible, as is measuring protein interactions using fluorescence resonance energy transfer (FRET). We have created a set of yeast tagging vectors containing codon-optimized variants of GFP, CFP (cyan), YFP (yellow), and Sapphire (a UV-excitable GFP). These codon-optimized tags are twice as detectable as unoptimized tags. We have also created a tagging vector containing the monomeric DsRed construct tdimer2, which is up to 15-fold more detectable than tags currently in use. These tags significantly improve the detection limits for live-cell fluorescence imaging in yeast, and provide sufficient distinguishable fluorophores for four-colour imaging. Copyright 2004 John Wiley & Sons, Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution.

            The present paper describes a new experimental scheme for following diffusion and chemical reaction systems of fluorescently labeled molecules in the nanomolar concentration range by fluorescence correlation analysis. In the dual-color fluorescence cross-correlation spectroscopy provided here, the concentration and diffusion characteristics of two fluorescent species in solution as well as their reaction product can be followed in parallel. By using two differently labeled reaction partners, the selectivity to investigate the temporal evolution of reaction product is significantly increased compared to ordinary one-color fluorescence autocorrelation systems. Here we develop the theoretical and experimental basis for carrying out measurements in a confocal dual-beam fluorescence correlation spectroscopy setup and discuss conditions that are favorable for cross-correlation analysis. The measurement principle is explained for carrying out DNA-DNA renaturation kinetics with two differently labeled complementary strands. The concentration of the reaction product can be directly determined from the cross-correlation amplitude.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fluorescence cross-correlation spectroscopy in living cells.

              Cell biologists strive to characterize molecular interactions directly in the intracellular environment. The intrinsic resolution of optical microscopy, however, allows visualization of only coarse subcellular localization. By extracting information from molecular dynamics, fluorescence cross-correlation spectroscopy (FCCS) grants access to processes on a molecular scale, such as diffusion, binding, enzymatic reactions and codiffusion, and has become a valuable tool for studies in living cells. Here we review basic principles of FCCS and focus on seminal applications, including examples of intracellular signaling and trafficking. We consider FCCS in the context of fluorescence resonance energy transfer and multicolor imaging techniques and discuss application strategies and recent technical advances.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                23 April 2008
                : 3
                : 4
                : e1931
                Affiliations
                [1]The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
                Ordway Research Institute, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: rli@ 123456stowers-institute.org

                Conceived and designed the experiments: RL BS JS JH. Performed the experiments: BS. Analyzed the data: BS. Contributed reagents/materials/analysis tools: JS JH WW. Wrote the paper: RL BS.

                Article
                08-PONE-RA-03312
                10.1371/journal.pone.0001931
                2291563
                18431466
                64ebecbe-2518-4103-8f0c-6c43047acfb3
                Slaughter et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 15 January 2008
                : 27 February 2008
                Page count
                Pages: 8
                Categories
                Research Article
                Biophysics
                Biophysics/Cell Signaling and Trafficking Structures
                Biophysics/Experimental Biophysical Methods
                Cell Biology/Cell Signaling
                Biophysics
                Biophysics/Cell Signaling and Trafficking Structures
                Biophysics/Experimental Biophysical Methods
                Cell Biology/Cell Signaling

                Uncategorized
                Uncategorized

                Comments

                Comment on this article