9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-302d inhibits TGFB-induced EMT and promotes MET in primary human RPE cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Transforming growth factor-beta (TGFB)-mediated epithelial-mesenchymal transition (EMT) plays a crucial role in the pathogenesis of retinal fibrosis, which is one of the leading causes of impaired vision. Current approaches to treating retinal fibrosis focus, among other things, on inhibiting the TGFB signaling pathway. Transient expression of microRNAs (miRNAs) is one way to inhibit the TGFB pathway post-transcriptionally. Our previous study identified the miRNA miR-302d as a regulator of multiple TGFB-related genes in ARPE-19 cells. To further explore its effect on primary cells, the effect of miR-302d on TGFB-induced EMT in primary human retinal pigment epithelium (hRPE) was investigated in vitro.

          Methods

          hRPE cells were extracted from patients receiving enucleation. Transfection of hRPE cells with miR-302d was performed before or after TGFB1 stimulation. Live-cell imaging, immunocytochemistry staining, Western blot, and ELISA assays were utilized to identify the alterations of cellular morphology and EMT-related factors expressions in hRPE cells.

          Results

          hRPE cells underwent EMT by TGFB1 exposure. The transfection of miR-302d inhibited the transition with decreased production of mesenchymal markers and increased epithelial factors. Meanwhile, the phosphorylation of SMAD2 activated by TGFB1 was suppressed. Moreover, miR-302d expression promoted TGFB1-induced fibroblast-like hRPE cells to revert towards an epithelial stage. As confirmed by ELISA, miR-302d reduced TGFB receptor 2 (TGFBR2) and vascular endothelial growth factor A (VEGFA) levels 48 hours after transfection.

          Conclusions

          The protective effect of miR-302d might be a promising approach for ameliorating retinal fibrosis and neovascularization. MiR-302d suppresses TGFB-induced EMT in hRPE cells via downregulation of TGFBR2, even reversing the process. Furthermore, miR-302d reduces the constitutive secretion of VEGFA from hRPE cells.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNAs: genomics, biogenesis, mechanism, and function.

          MicroRNAs (miRNAs) are endogenous approximately 22 nt RNAs that can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular mechanisms of epithelial-mesenchymal transition.

            The transdifferentiation of epithelial cells into motile mesenchymal cells, a process known as epithelial-mesenchymal transition (EMT), is integral in development, wound healing and stem cell behaviour, and contributes pathologically to fibrosis and cancer progression. This switch in cell differentiation and behaviour is mediated by key transcription factors, including SNAIL, zinc-finger E-box-binding (ZEB) and basic helix-loop-helix transcription factors, the functions of which are finely regulated at the transcriptional, translational and post-translational levels. The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues. Among these, transforming growth factor-β (TGFβ) family signalling has a predominant role; however, the convergence of signalling pathways is essential for EMT.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The basics of epithelial-mesenchymal transition.

              The origins of the mesenchymal cells participating in tissue repair and pathological processes, notably tissue fibrosis, tumor invasiveness, and metastasis, are poorly understood. However, emerging evidence suggests that epithelial-mesenchymal transitions (EMTs) represent one important source of these cells. As we discuss here, processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropriated and subverted by chronically inflamed tissues and neoplasias. The identification of the signaling pathways that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes and possible therapeutic interventions.
                Bookmark

                Author and article information

                Contributors
                Role: Data curationRole: Formal analysisRole: InvestigationRole: VisualizationRole: Writing – original draft
                Role: ResourcesRole: Writing – review & editing
                Role: ResourcesRole: Writing – review & editing
                Role: ResourcesRole: Writing – review & editing
                Role: ResourcesRole: SupervisionRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: MethodologyRole: Project administrationRole: SupervisionRole: VisualizationRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS One
                plos
                PLOS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                28 November 2022
                2022
                : 17
                : 11
                : e0278158
                Affiliations
                [001] Institute of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
                Charite Universitatsmedizin Berlin, GERMANY
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0001-9142-4084
                Article
                PONE-D-22-20602
                10.1371/journal.pone.0278158
                9704570
                36441751
                64e70f6c-4f48-44c1-be32-7e2d16951d12
                © 2022 Hu et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 July 2022
                : 13 October 2022
                Page count
                Figures: 11, Tables: 0, Pages: 17
                Funding
                The authors received no specific funding for this work.
                Categories
                Research Article
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Transfection
                Research and Analysis Methods
                Molecular Biology Techniques
                Transfection
                Biology and life sciences
                Cell biology
                Signal transduction
                Cell signaling
                Signaling cascades
                TGF-beta signaling cascade
                Biology and Life Sciences
                Developmental Biology
                Fibrosis
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Non-coding RNA
                Natural antisense transcripts
                MicroRNAs
                Biology and life sciences
                Genetics
                Gene expression
                Gene regulation
                MicroRNAs
                Research and Analysis Methods
                Specimen Preparation and Treatment
                Staining
                Cell Staining
                Biology and Life Sciences
                Biochemistry
                Proteins
                Post-Translational Modification
                Phosphorylation
                Computer and Information Sciences
                Software Engineering
                Computer Software
                Engineering and Technology
                Software Engineering
                Computer Software
                Biology and Life Sciences
                Cell Biology
                Signal Transduction
                Cell Signaling
                Custom metadata
                All relevant data are within the article and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article