There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2016) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2017) were collected by the National Center for Health Statistics. In 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States. The cancer death rate rose until 1991, then fell continuously through 2017, resulting in an overall decline of 29% that translates into an estimated 2.9 million fewer cancer deaths than would have occurred if peak rates had persisted. This progress is driven by long-term declines in death rates for the 4 leading cancers (lung, colorectal, breast, prostate); however, over the past decade (2008-2017), reductions slowed for female breast and colorectal cancers, and halted for prostate cancer. In contrast, declines accelerated for lung cancer, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017. Yet lung cancer still caused more deaths in 2017 than breast, prostate, colorectal, and brain cancers combined. Recent mortality declines were also dramatic for melanoma of the skin in the wake of US Food and Drug Administration approval of new therapies for metastatic disease, escalating to 7% annually during 2013 through 2017 from 1% during 2006 through 2010 in men and women aged 50 to 64 years and from 2% to 3% in those aged 20 to 49 years; annual declines of 5% to 6% in individuals aged 65 years and older are particularly striking because rates in this age group were increasing prior to 2013. It is also notable that long-term rapid increases in liver cancer mortality have attenuated in women and stabilized in men. In summary, slowing momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers.
Hypoxia-inducible factor-1 (HIF-1) has a key role in cellular responses to hypoxia, including the regulation of genes involved in energy metabolism, angiogenesis and apoptosis. The alpha subunits of HIF are rapidly degraded by the proteasome under normal conditions, but are stabilized by hypoxia. Cobaltous ions or iron chelators mimic hypoxia, indicating that the stimuli may interact through effects on a ferroprotein oxygen sensor. Here we demonstrate a critical role for the von Hippel-Lindau (VHL) tumour suppressor gene product pVHL in HIF-1 regulation. In VHL-defective cells, HIF alpha-subunits are constitutively stabilized and HIF-1 is activated. Re-expression of pVHL restored oxygen-dependent instability. pVHL and HIF alpha-subunits co-immunoprecipitate, and pVHL is present in the hypoxic HIF-1 DNA-binding complex. In cells exposed to iron chelation or cobaltous ions, HIF-1 is dissociated from pVHL. These findings indicate that the interaction between HIF-1 and pVHL is iron dependent, and that it is necessary for the oxygen-dependent degradation of HIF alpha-subunits. Thus, constitutive HIF-1 activation may underlie the angiogenic phenotype of VHL-associated tumours. The pVHL/HIF-1 interaction provides a new focus for understanding cellular oxygen sensing.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.